1
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
2
|
Williams A, Sinanaj B, Hoysted GA. Plant-microbe interactions through a lens: tales from the mycorrhizosphere. ANNALS OF BOTANY 2024; 133:399-412. [PMID: 38085925 PMCID: PMC11006548 DOI: 10.1093/aob/mcad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 04/12/2024]
Abstract
BACKGROUND The soil microbiome plays a pivotal role in maintaining ecological balance, supporting food production, preserving water quality and safeguarding human health. Understanding the intricate dynamics within the soil microbiome necessitates unravelling complex bacterial-fungal interactions (BFIs). BFIs occur in diverse habitats, such as the phyllosphere, rhizosphere and bulk soil, where they exert substantial influence on plant-microbe associations, nutrient cycling and overall ecosystem functions. In various symbiotic associations, fungi form mycorrhizal connections with plant roots, enhancing nutrient uptake through the root and mycorrhizal pathways. Concurrently, specific soil bacteria, including mycorrhiza helper bacteria, play a pivotal role in nutrient acquisition and promoting plant growth. Chemical communication and biofilm formation further shape plant-microbial interactions, affecting plant growth, disease resistance and nutrient acquisition processes. SCOPE Promoting synergistic interactions between mycorrhizal fungi and soil microbes holds immense potential for advancing ecological knowledge and conservation. However, despite the significant progress, gaps remain in our understanding of the evolutionary significance, perception, functional traits and ecological relevance of BFIs. Here we review recent findings obtained with respect to complex microbial communities - particularly in the mycorrhizosphere - and include the latest advances in the field, outlining their profound impacts on our understanding of ecosystem dynamics and plant physiology and function. CONCLUSIONS Deepening our understanding of plant BFIs can help assess their capabilities with regard to ecological and agricultural safe-guarding, in particular buffering soil stresses, and ensuring sustainable land management practices. Preserving and enhancing soil biodiversity emerge as critical imperatives in sustaining life on Earth amidst pressures of anthropogenic climate change. A holistic approach integrates scientific knowledge on bacteria and fungi, which includes their potential to foster resilient soil ecosystems for present and future generations.
Collapse
Affiliation(s)
- Alex Williams
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Grace A Hoysted
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
3
|
Lajoie G, Kembel SW. Data-driven identification of major axes of functional variation in bacteria. Environ Microbiol 2023; 25:2580-2591. [PMID: 37648438 DOI: 10.1111/1462-2920.16487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
The discovery of major axes of correlated functional variation among species and habitats has revealed the fundamental trade-offs structuring both functional and taxonomic diversity in eukaryotes such as plants. Whether such functional axes exist in the bacterial realm and whether they could explain bacterial taxonomic turnover among ecosystems remains unknown. Here, we use a data-driven approach to leverage global genomic and metagenomic datasets to reveal the existence of major axes of functional variation explaining both evolutionary differentiation within Bacteria and their ecological sorting across diverse habitats. We show that metagenomic variation among bacterial communities from various ecosystems is structured along a few axes of correlated functional pathways. Similar clusters of traits explained phylogenetic trait variation among >16,000 bacterial genomes, suggesting that functional turnover among bacterial communities from distinct habitats does not only result from the differential filtering of similar functions among communities, but also from phylogenetic correlations among these functions. Concordantly, functional pathways associated with trait clusters that were most important for defining functional turnover among bacterial communities were also those that had the highest phylogenetic signal in the bacterial genomic phylogeny. This study overall underlines the important role of evolutionary history in shaping contemporary distributions of bacteria across ecosystems.
Collapse
Affiliation(s)
- Geneviève Lajoie
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| | - Steven W Kembel
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| |
Collapse
|
4
|
Li X, Li J, Zhao Q, Qiao L, Wang L, Yu C. Physiological, biochemical, and genomic elucidation of the Ensifer adhaerens M8 strain with simultaneous arsenic oxidation and chromium reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129862. [PMID: 36084460 DOI: 10.1016/j.jhazmat.2022.129862] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
This study reports the simultaneous oxidation of As(III) and reduction of the Cr(VI) strain Ensifer adhaerens M8 screened from soils around abandoned gold tailings contaminated with highly complex metals (loids). Physiological, biochemical, and genomic techniques were used to explore the mechanism. The strain M8 could simultaneously oxidize 1 mM As(III) and reduce 45.3 % 0.1 mM Cr(VI) in 16 h, and the Cr(VI) reduction rate was increased by 5.8 % compared with the addition of Cr(VI) alone. Cellular debris was the main site of M8 arsenic oxidation. Chromium reduction was dominated by the reduction of extracellular hexavalent chromium (23.80-35.67 %). The genome of M8 included one chromosome and four plasmids, and a comparison of the genomes showed that M8 had two more plasmids than strains of the same genus, which may be related to strong environmental adaptations. M8 had 10 heavy metal resistance genes (HMRs), and plasmid D had a complete cluster of arsenic resistance-oxidation-transport genes (arsOHBCCR-aioSR-aioBA-cytCmoeA-phoBBU-PstBACS-phnCDEE). The genes involved in Cr(VI) detoxification include DNA repair (RecG, ruvABC, and UvrD), Cr(VI) transport (chrA, TonB, and CysAPTW) and Cr(VI) reduction. In summary, this study provides a molecular basis for As (III) and Cr (VI) remediation.
Collapse
Affiliation(s)
- Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Jingru Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Qiancheng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Longkai Qiao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Limin Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
VfqI-VfqR quorum sensing circuit modulates type VI secretion system VflT6SS2 in Vibrio fluvialis. Biochem Biophys Rep 2022; 31:101282. [PMID: 35669988 PMCID: PMC9166416 DOI: 10.1016/j.bbrep.2022.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
V. fluvialis is an emerging foodborne pathogen and could cause cholera-like gastroenteritis syndrome and poses a potential threat to public health. VflT6SS2 is a functionally active type VI secretion system (T6SS) in V. fluvialis which confers bactericidal activity. VflT6SS2 is composed of one major cluster and three hcp-vgrG orphan clusters. Previously, we identified two quorum sensing (QS) systems CqsA/LuxS-HapR and VfqI-VfqR in V. fluvialis and demonstrated that the former regulates VflT6SS2. However, whether VfqI-VfqR QS regulates VflT6SS2 is unknown. In this study, we showed that the mRNA abundances of VflT6SS2 tssD2 (hcp), tssI2 (vgrG) and tssB2 (vipA) were all significantly decreased in VfqI or/and VfqR deletion mutant(s). Consistently, Hcp expression/secretion was reduced too in these mutants. Complementation assay with VfqR mutant further confirmed that the reduced Hcp expression/secretion and impaired antibacterial virulence are restored by introducing VfqR-expressing plasmid. Reporter fusion analyses revealed that VfqR modulates the promoter activities of VflT6SS2. Bioinformatical prediction and further reporter fusion assay in E. coli supported that VfqR acts as a transcriptional factor to bind and regulate the gene expression of the VflT6SS2 major cluster. However, VfqR seems to promote transcription of hcp (tssD2) in the orphan clusters through elevating the expression of vasH which is encoded by the VflT6SS2 major cluster. Additionally, we found that the regulation intensity of VfqR on VflT6SS2 is weaker than that of HapR. In conclusion, our current study disclosed that in V. fluvialis, VfqI-VfqR circuit upregulates the expression and function of VflT6SS2 by directly or indirectly activating its transcription. These findings will enhance our understanding of the complicated regulatory network between QS and T6SS in V. fluvialis. VfqI-VfqR quorum sensing (QS) circuit positively modulates VflT6SS2 in V. fluvialis. VfqR directly activates VflT6SS2 major cluster while indirectly activates hcp orphan clusters. VfqR functions as a secondary QS regulator manipulating VflT6SS2 comparing with HapR.
Collapse
|
6
|
Vora SM, Ankati S, Patole C, Podile AR, Archana G. Alterations of Primary Metabolites in Root Exudates of Intercropped Cajanus cajan-Zea mays Modulate the Adaptation and Proteome of Ensifer (Sinorhizobium) fredii NGR234. MICROBIAL ECOLOGY 2022; 83:1008-1025. [PMID: 34351469 DOI: 10.1007/s00248-021-01818-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/07/2021] [Indexed: 05/22/2023]
Abstract
Legume-cereal intercropping systems, in the context of diversity, ecological function, and better yield have been widely studied. Such systems enhance nutrient phytoavailability by balancing root-rhizosphere interactions. Root exudates (RE) play an important role in the rhizospheric interactions of plant-plant and/or plant-microbiome interaction. However, the influence of the primary metabolites of RE on plant-rhizobia interactions in a legume-cereal intercrop system is not known. To understand the plant communication with rhizobia, Cajanus cajan-Zea mays intercropped plants and the broad host range legume nodulating Ensifer fredii NGR234 as the model plants and rhizobium used respectively. A metabolomics-based approach revealed a clear separation between intercropped and monocropped RE of the two plants. Intercropped C. cajan showed an increase in the myo-inositol, and proline, while intercropped Z. mays showed enhanced galactose, D-glucopyranoside, and arginine in the RE. Physiological assays of NGR234 with the RE of intercropped C. cajan exhibited a significant enhancement in biofilm formation, while intercropped Z. mays RE accelerated the bacterial growth in the late log phase. Further, using label-free proteomics, we identified a total of 2570 proteins of NGR234 covering 50% annotated protein sequences upon exposure to Z. mays RE. Furthermore, intercropped Z. mays RE upregulated bacterioferritin comigratory protein (BCP), putative nitroreductase, IlvD, LeuC, D (branched-chain amino acid proteins), and chaperonin proteins GroEL2. Identification offered new insights into the metabolome of the legume-cereal intercrop and proteome of NGR234-Z. mays interactions that underline the new molecular candidates likely to be involved in the fitness of rhizobium in the intercropping system.
Collapse
Affiliation(s)
- Siddhi M Vora
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Sravani Ankati
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Chhaya Patole
- Institute for Stem Cell Science and Regenerative Medicine, NCBS-TIFR Campus, Bellary Road, Bangalore, Karnataka, India
| | - Appa Rao Podile
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - G Archana
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
7
|
N-acyl Homoserine Lactone Mediated Quorum Sensing Exhibiting Plant Growth-promoting and Abiotic Stress Tolerant Bacteria Demonstrates Drought Stress Amelioration. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple plant growth-promoting attributes with N-acyl homoserine lactone (AHL)-mediated quorum sensing exhibiting bacterial strains can help plants to withstand varying abiotic and biotic stress conditions for improving the plant health and productivity. In total, 306 bacterial isolates were isolated from diverse locations and sites. In our exploration, bacterial isolates were screened based on AHL production, plant growth-promoting attributes, abiotic stress tolerance, and antagonistic activity against phytopathogenic fungi. Among the screened 306 isolates, 4 (11VPKHP4, 7VP51.8, P51.10, NBRI N7) were selected based on their efficiency in AHL production, biofilm formation, enduring different abiotic stress conditions, exhibiting plant growth-promoting attributes, and antagonistic activity. Based on 16S rRNA gene sequencing analyses of the selected 4 isolates belong to Pseudomonas genera. Selected isolates 11VPKHP4, 7VP51.8, P51.10, and NBRI N7 were also proficient in biosurfactant production, emulsification, suggesting that all isolates fabricate emulsifiers. The plant growth promotion potential of selected 4 bacterial isolates showed significant growth enhancement in all the vegetative parameters of Zea mays under control as well as drought stress condition. Biochemical parameters and defense enzymes under drought stress conditions were also modulated in the PGPR treated plants as compared to their uninoculated respective controls. With quorum sensing, multiple PGPR attributes, stress tolerance, biofilm formation, and EPS production the selected isolates have the potential to facilitate enhanced plant growth, rhizosphere colonization, maintenance of soil moisture content under normal and diverse stresses.
Collapse
|
8
|
Abstract
Pigeon pea, a legume crop native to India, is the primary source of protein for more than a billion people in developing countries. The plant can form symbioses with N2-fixing bacteria; however, reports of poor crop nodulation in agricultural soils abound. We report here a study of the bacterial community associated with pigeon pea, with a special focus on the symbiont population in different soils and vegetative and non-vegetative plant growth. Location with respect to the plant roots was determined to be the main factor controlling the bacterial community, followed by developmental stage and soil type. Plant genotype plays only a minor role. Pigeon pea roots have a reduced microbial diversity compared to the surrounding soil and select for Proteobacteria, especially for Rhizobium spp., during vegetative growth. While Bradyrhizobium, a native symbiont of pigeon pea, can be found associating with roots, its presence is dependent on plant variety and soil conditions. A combination of 16S rRNA gene amplicon survey, strain isolation, and co-inoculation with nodule-forming Bradyrhizobium spp. and non-N2-fixing Rhizobium spp. demonstrated that the latter is a much more successful colonizer of pigeon pea roots. Poor nodulation of pigeon pea in Indian soils may be caused by a poor Bradyrhizobium competitiveness against non-nodulating root colonizers such as Rhizobium. Hence, inoculant strain selection of symbionts for pigeon pea should be based not only on their nitrogen fixation potential but, more importantly, on their competitiveness in agricultural soils.
Collapse
|
9
|
Pervasive RNA Regulation of Metabolism Enhances the Root Colonization Ability of Nitrogen-Fixing Symbiotic α-Rhizobia. mBio 2021; 13:e0357621. [PMID: 35164560 PMCID: PMC8844928 DOI: 10.1128/mbio.03576-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rhizosphere and rhizoplane are nutrient-rich but selective environments for the root microbiome. Here, we deciphered a posttranscriptional network regulated by the homologous trans-small RNAs (sRNAs) AbcR1 and AbcR2, which rewire the metabolism of the nitrogen-fixing α-rhizobium Sinorhizobium meliloti during preinfection stages of symbiosis with its legume host alfalfa. The LysR-type regulator LsrB, which transduces the cell redox state, is indispensable for AbcR1 expression in actively dividing bacteria, whereas the stress-induced transcription of AbcR2 depends on the alternative σ factor RpoH1. MS2 affinity purification coupled with RNA sequencing unveiled exceptionally large and overlapping AbcR1/2 mRNA interactomes, jointly representing ⁓6% of the S. meliloti protein-coding genes. Most mRNAs encode transport/metabolic proteins whose translation is silenced by base pairing to two distinct anti-Shine Dalgarno motifs that function independently in both sRNAs. A metabolic model-aided analysis of the targetomes predicted changes in AbcR1/2 expression driven by shifts in carbon/nitrogen sources, which were confirmed experimentally. Low AbcR1/2 levels in some defined media anticipated overexpression growth phenotypes linked to the silencing of specific mRNAs. As a proof of principle, we confirmed AbcR1/2-mediated downregulation of the l-amino acid AapQ permease. AbcR1/2 interactomes are well represented in rhizosphere-related S. meliloti transcriptomic signatures. Remarkably, a lack of AbcR1 specifically compromised the ability of S. meliloti to colonize the root rhizoplane. The AbcR1 regulon likely ranks the utilization of available substrates to optimize metabolism, thus conferring on S. meliloti an advantage for efficient rhizosphere/rhizoplane colonization. AbcR1 regulation is predicted to be conserved in related α-rhizobia, which opens unprecedented possibilities for engineering highly competitive biofertilizers. IMPORTANCE Nitrogen-fixing root nodule symbioses between rhizobia and legume plants provide more than half of the combined nitrogen incorporated annually into terrestrial ecosystems, rendering plant growth independent of environmentally unfriendly chemical fertilizers. The success of symbiosis depends primarily on the capacity of rhizobia to establish competitive populations in soil and rhizosphere environments. Here, we provide insights into the regulation and architecture of an extensive RNA posttranscriptional network that fine-tunes the metabolism of the alfalfa symbiont S. meliloti, thereby enhancing the ability of this beneficial bacterium to colonize nutrient-rich but extremely selective niches, such as the rhizosphere of its host plant. This pervasive RNA regulation of metabolism is a major adaptive mechanism, predicted to operate in diverse rhizobial species. Because RNA regulation relies on modifiable base-pairing interactions, our findings open unexplored avenues for engineering the legumes rhizobiome within sustainable agricultural practices.
Collapse
|