1
|
Yang H, Yao Y, Chen W, Gu X, Chen H, Zeng Q, Mao Z, Xiang T. Occurrence and risk assessment of different cyanotoxins and their relationship with environmental factors in six typical eutrophic lakes of China. ENVIRONMENTAL RESEARCH 2025; 272:121184. [PMID: 39983957 DOI: 10.1016/j.envres.2025.121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Cyanobacterial blooms can generate various toxic metabolites in freshwater, and pose serious threats to drinking water safety and human health. Although microcystins (MCs) have been detected in many freshwater ecosystems in China, little is known about the other cyanotoxins. An investigation of six eutrophic lakes (i.e. Hulun Lake, Wuliangsuhai Lake, Chaohu Lake, Taihu Lake, Xingyun Lake, and Dianchi Lake) in different geographical locations of China was performed during the summer of 2022 to determine the occurrence of various cyanotoxins (i.e. anatoxin-a (ATX), cylindrospermopsin (CYN), and MCs) in water column and their possible risks, and to evaluate the related environmental factors. MCs levels in sediment of these lakes were also investigated. MCs were the primary cyanotoxins in the water column of investigated lakes. The mean MCs contents in water column of Hulun Lake, Wuliangsuhai Lake, Chaohu Lake, Taihu Lake, Xingyun Lake, and Dianchi Lake were 3.61, 0.13, 3.60, 2.18, 0.57, and 2.56 μg/L, respectively. The total MCs levels in water column exceeded 1 μg/L in some areas of these lakes except Wuliangsuhai Lake. Replete nitrogen and/or phosphorus levels seemed to be related to MCs production. ATX can be detected in these lakes except Xingyun Lake at ng/L levels. CYN can be detected in all lakes at ng/L levels. However, the levels of ATX and CYN appear to be not significantly associated with environmental factors. MCs and CYN can pose a high or moderate risk for humans and aquatic organisms in some areas of these lakes, while ATX can pose a low or no risk for humans and aquatic organisms in most areas of these lakes. MCs can also be detected in sediment of all lakes at ng/g levels. This research emphasizes the necessity for long-term monitoring of different cyanotoxins in eutrophic lakes, and the implementation of nutrient control and management strategies.
Collapse
Affiliation(s)
- Huiting Yang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujia Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - Huihui Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigang Mao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Tao Xiang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
2
|
Fu C, Wang X, Yu J, Cui H, Hou S, Zhu H. From winter dormancy to spring bloom: Regulatory mechanisms in Microcystis aeruginosa post-overwintering recovery. WATER RESEARCH 2025; 269:122807. [PMID: 39577387 DOI: 10.1016/j.watres.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Cyanobacterial blooms pose a significant environmental threat in freshwater ecosystems. These cyanobacteria exhibit resilience to cold and dark conditions during winter and flourish as temperature rise in warmer seasons. However, there is a limited understanding of the dynamic growth recovery process and regulatory signaling mechanisms in cyanobacteria after overwintering. In this study, we employed Microcystis aeruginosa (M. aeruginosa) as a model to simulate its growth recovery when subjected to increasing temperature after overwintering under low temperature (4 °C) and dark conditions. We investigated changes in cell growth, microcystin levels, and signaling pathways throughout this recovery phase. Our results indicated that compared to the non-overwintering treatment (T1), the overwintered treatment (T2) experienced a 55.6 % decrease in algae density and a significant reduction in microcystin-LR (MC-LR) levels within the 15-20 °C temperature range (p < 0.05). Overwintering suppressed photosynthetic efficiency during the recovery phase of M. aeruginosa, activated the antioxidant system, and impaired cellular ultrastructure, making algal cells more vulnerable to death. At the transcriptional level, overwintering down-regulated pathways such as photosynthesis, ribosome, the Calvin cycle, and oxidative phosphorylation, hindering the growth and metabolic capacity of M. aeruginosa. In conclusion, this study highlights the inhibitory impacts of overwintering on growth and metabolism of cyanobacteria during the recovery process. It provides insights into the mechanistic foundations of seasonal cyanobacterial blooms and the crucial role of signaling regulation in these processes.
Collapse
Affiliation(s)
- Chenjun Fu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jing Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shengnan Hou
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hui Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China.
| |
Collapse
|
3
|
Yang F, Yang L, Wei J, Ma T, Zhou M, Liao L, Xie J, Zhou P. Comprehensive genomic and transcriptomic analyses of the anaerobic degradation of microcystin in Alcaligenes faecalis D04. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117721. [PMID: 39823672 DOI: 10.1016/j.ecoenv.2025.117721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025]
Abstract
Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.303 µg/mL/d under anaerobic conditions was isolated from water. The strain was identified as Alcaligenes and named Alcaligenes faecalis D04. Two new anaerobic degradation products, one pentapeptide (Adda-Glu-Mdha-Ala-Leu) and one tripeptide (Adda-Glu-Mdha), were identified by chromatography and mass spectrometry, and two new anaerobic degradation pathways for microcystins were proposed. This study revealed a new connection between related functional genes (mblH, ridA, paaA, livI, soxR, gltD, marR, etc.) and bacterial degradation functions through the analysis of multiomics data. Real-time quantitative PCR analysis verified that the expression trends of the differentially expressed genes were consistent with the transcriptomic data. Our study aimed to elucidate the anaerobic degradation pathway and molecular regulatory mechanism of MC-LR in Alcaligenes faecalis D04, which offers important practical significance for microbial strategies to prevent and regulate microcystin contamination.
Collapse
Affiliation(s)
- Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Lili Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Jia Wei
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Tian Ma
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Mengna Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Liwen Liao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Junhao Xie
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| | - Pengji Zhou
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
González Álvarez Á, Martinez I Quer A, Ellegaard-Jensen L, Sapkota R, Carvalho PN, Johansen A. Fungal removal of cyanotoxins in constructed wetlands: The forgotten degraders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172590. [PMID: 38642746 DOI: 10.1016/j.scitotenv.2024.172590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.
Collapse
Affiliation(s)
- Ángela González Álvarez
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Alba Martinez I Quer
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Mugani R, El Khalloufi F, Redouane EM, Haida M, Aba RP, Essadki Y, El Amrani Zerrifi S, Hejjaj A, Ouazzani N, Campos A, Grossart HP, Mandi L, Vasconcelos V, Oudra B. Unlocking the potential of bacterioplankton-mediated microcystin degradation and removal: A bibliometric analysis of sustainable water treatment strategies. WATER RESEARCH 2024; 255:121497. [PMID: 38555787 DOI: 10.1016/j.watres.2024.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microcystins (MCs) constitute a significant threat to human and environmental health, urging the development of effective removal methods for these toxins. In this review, we explore the potential of MC-degrading bacteria as a solution for the removal of MCs from water. The review insights into the mechanisms of action employed by these bacteria, elucidating their ability to degrade and thus remove MCs. After, the review points out the influence of the structural conformation of MCs on their removal, particularly their stability at different water depths within different water bodies. Then, we review the crucial role played by the production of MCs in ensuring the survival and safeguarding of the enzymatic activities of Microcystis cells. This justifies the need for developing effective and sustainable methods for removing MCs from aquatic ecosystems, given their critical ecological function and potential toxicity to humans and animals. Thereafter, challenges and limitations associated with using MC-degrading bacteria in water treatment are discussed, emphasizing the need for further research to optimize the selection of bacterial strains used for MCs biodegradation. The interaction of MCs-degrading bacteria with sediment particles is also crucial for their toxin removal potential and its efficiency. By presenting critical information, this review is a valuable resource for researchers, policymakers, and stakeholders involved in developing sustainable and practical approaches to remove MCs. Our review highlights the potential of various applications of MC-degrading bacteria, including multi-soil-layering (MSL) technologies. It emphasizes the need for ongoing research to optimize the utilization of MC-degrading bacteria in water treatment, ultimately ensuring the safety and quality of water sources. Moreover, this review highlights the value of bibliometric analyses in revealing research gaps and trends, providing detailed insights for further investigations. Specifically, we discuss the importance of employing advanced genomics, especially combining various OMICS approaches to identify and optimize the potential of MCs-degrading bacteria.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco; Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Roseline Prisca Aba
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim, Morocco
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco.
| | - Naaila Ouazzani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469 Potsdam, Germany
| | - Laila Mandi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
6
|
Mugani R, El Khalloufi F, Kasada M, Redouane EM, Haida M, Aba RP, Essadki Y, Zerrifi SEA, Herter SO, Hejjaj A, Aziz F, Ouazzani N, Azevedo J, Campos A, Putschew A, Grossart HP, Mandi L, Vasconcelos V, Oudra B. Monitoring of toxic cyanobacterial blooms in Lalla Takerkoust reservoir by satellite imagery and microcystin transfer to surrounding farms. HARMFUL ALGAE 2024; 135:102631. [PMID: 38830709 DOI: 10.1016/j.hal.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) threaten public health and freshwater ecosystems worldwide. In this study, our main goal was to explore the dynamics of cyanobacterial blooms and how microcystins (MCs) move from the Lalla Takerkoust reservoir to the nearby farms. We used Landsat imagery, molecular analysis, collecting and analyzing physicochemical data, and assessing toxins using HPLC. Our investigation identified two cyanobacterial species responsible for the blooms: Microcystis sp. and Synechococcus sp. Our Microcystis strain produced three MC variants (MC-RR, MC-YR, and MC-LR), with MC-RR exhibiting the highest concentrations in dissolved and intracellular toxins. In contrast, our Synechococcus strain did not produce any detectable toxins. To validate our Normalized Difference Vegetation Index (NDVI) results, we utilized limnological data, including algal cell counts, and quantified MCs in freeze-dried Microcystis bloom samples collected from the reservoir. Our study revealed patterns and trends in cyanobacterial proliferation in the reservoir over 30 years and presented a historical map of the area of cyanobacterial infestation using the NDVI method. The study found that MC-LR accumulates near the water surface due to the buoyancy of Microcystis. The maximum concentration of MC-LR in the reservoir water was 160 µg L-1. In contrast, 4 km downstream of the reservoir, the concentration decreased by a factor of 5.39 to 29.63 µgL-1, indicating a decrease in MC-LR concentration with increasing distance from the bloom source. Similarly, the MC-YR concentration decreased by a factor of 2.98 for the same distance. Interestingly, the MC distribution varied with depth, with MC-LR dominating at the water surface and MC-YR at the reservoir outlet at a water depth of 10 m. Our findings highlight the impact of nutrient concentrations, environmental factors, and transfer processes on bloom dynamics and MC distribution. We emphasize the need for effective management strategies to minimize toxin transfer and ensure public health and safety.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco; Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco
| | - Minoru Kasada
- Graduate School of Life Sciences, Tohoku University 6-3, Aoba, Sendai, 980-8578 Japan
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; UMR-I 02 INERIS-URCA-ULH SEBIO, University of Reims Champagne-Ardenne, Reims 51100, France
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| | - Roseline Prisca Aba
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim, 81000, Morocco
| | - Sven-Oliver Herter
- Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Faissal Aziz
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Joana Azevedo
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Anke Putschew
- Department of Water Quality Engineering, Institute of Environmental Technology, Technical University Berlin, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775, Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469, Potsdam, Germany
| | - Laila Mandi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000, Marrakech, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech, 40000, Morocco
| |
Collapse
|
7
|
Santos AA, Garrute FV, Magalhães VF, Pacheco ABF. Microcystin removal by microbial communities from a coastal lagoon: Influence of abiotic factors, bacterioplankton composition and estimated functions. HARMFUL ALGAE 2024; 135:102646. [PMID: 38830712 DOI: 10.1016/j.hal.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Toxic cyanobacterial blooms present a substantial risk to public health due to the production of secondary metabolites, notably microcystins (MCs). Microcystin-LR (MC-LR) is the most prevalent and toxic variant in freshwater. MCs resist conventional water treatment methods, persistently impacting water quality. This study focused on an oligohaline shallow lagoon historically affected by MC-producing cyanobacteria, aiming to identify bacteria capable of degrading MC and investigating the influence of environmental factors on this process. While isolated strains did not exhibit MC degradation, microbial assemblages directly sourced from lagoon water removed MC-LR within seven days at 25 ºC and pH 8.0. The associated bacterial community demonstrated an increased abundance of bacterial taxa assigned to Methylophilales, and also Rhodospirillales and Rhodocyclales to a lesser extent. However, elevated atmospheric temperatures (45 ºC) and acidification (pH 5.0 and 3.0) hindered MC-LR removal, indicating that extreme environmental changes could contribute to prolonged MC persistence in the water column. This study highlights the importance of considering environmental conditions in order to develop strategies to mitigate cyanotoxin contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Allan A Santos
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Felipe V Garrute
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Ultrasound Laboratory, Biomedical Engineering Program-COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Biological Physics Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria F Magalhães
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Beatriz F Pacheco
- Biological Physics Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Feng J, Dong L, Wang H, Xie Y, Wang H, Ding L, Song G, Zhang J, Li T, Shen Q, Zhang Y. Application of aptamer-conjugated graphene oxide for specific enrichment of microcystin-LR in Achatina fulica prior to matrix-assisted laser desorption ionization mass spectrometry. Electrophoresis 2024; 45:275-287. [PMID: 37768831 DOI: 10.1002/elps.202300107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Microcystin-LR (MC-LR), as a hepatotoxin, can cause liver swelling, hepatitis, and even liver cancer. In this study, MC-LR aptamer (Apt-3) modified graphene oxide (GO) was designed to enrich MC-LR in white jade snail (Achatina fulica) and pond water, followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) analysis. Results indicated that the Apt-3/PEG/GO nanocomposites were highly specific to MC-LR, and the detection limit of MALDI-MS was 0.50 ng/mL. Moreover, the MC-LR can be released from nanocomposites at 75°C, thus, the reuse of Apt-3/PEG/GO is realized. Real sample analysis indicated that the Apt-3/PEG/GO nanocomposites coupled with MALDI-MS were efficient in detecting trace amounts of MC-LR in real samples. With the merits of being low cost, reusable, and easy to besynthesized, this Apt-3/PEG/GO MALDI-MS is expected to be comprehensively applied by anchoring suitable aptamers for different targets.
Collapse
Affiliation(s)
- Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linpei Dong
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
| | - Haixing Wang
- Key Laboratory of Drug Monitoring and Control of Zhejiang Province, National Anti-Drug Laboratory Zhejiang Regional Center, Hangzhou, P. R. China
| | - Yihong Xie
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Huizi Wang
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Lan Ding
- Heart Center, Department of Cardiovascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, P. R. China
| | - Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jian Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Ting Li
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing, P. R. China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
9
|
Diaz R, Hong S, Goel R. Effect of different types of volatile fatty acids on the performance and bacterial population in a batch reactor performing biological nutrient removal. BIORESOURCE TECHNOLOGY 2023; 388:129675. [PMID: 37625655 DOI: 10.1016/j.biortech.2023.129675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Different ratios of four volatile fatty acids (VFAs) were used as the primary feed to a laboratory scale biological nutrient reactor during four operational stages. The reactor performed efficiently over 500 days of operation with over 90% dissolved phosphorus and over 98% ammonium-nitrogen (NH4+-N) removal. Through in the first experimental phase, acetate and propionate were present in a significant proportion as carbon sources, the relative abundance of Candidatus Accumulibacter, a potential polyphosphate accumulating organism, increased from 10% to 57% and the Defluviicoccus genus, a known glycogen accumulating organism (GAO), decreased from 41% to 5%. Further tests indicated the presence of denitrifying phosphorus accumulating organisms (DPAO) belonging to Clade IIC, that could use nitrite as the electron acceptor during P-uptake. In general, VFAs favored the increase of the genus Defluviicoccus and Candidatus Accumulibacter. High relative abundance of Defluviicoccus did not affect the stability and the performance of the BNR process.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Soklida Hong
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Cheng C, Steinman AD, Zhang K, Lin Q, Xue Q, Wang X, Xie L. Risk assessment and identification of factors influencing the historical concentrations of microcystin in Lake Taihu, China. J Environ Sci (China) 2023; 127:1-14. [PMID: 36522044 DOI: 10.1016/j.jes.2022.03.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 06/17/2023]
Abstract
Understanding the history of microcystins (MCs) pollution in large lakes can help inform future lake management. We collected sediment cores from Lake Taihu to: investigate the long-term record of MCs (MC-LR, MC-YR, and MC-RR), explore the main environmental drivers of MCs, and assess their public health and ecological risks. Results showed that MCs content in all cores increased over time. The core from north Taihu had the highest MC concentrations, with an average total MCs (sum of MC-LR, MC-YR, and MC-RR = TMCs) content of (74.31±328.55) ng/g. The core from eastern Taihu showed the lowest average TMCs content of (2.91±3.95) ng/g. PCA showed that sediment MCs at the three sites were positively correlated with sediment chlorophyll-a. MC-LR and MC-YR in northern and western Taihu negatively correlated with both the sediment total organic carbon/sediment total nitrogen ratio (STOC/STN) and water nitrate (NO3--N) concentration, but three MC congeners at eastern Taihu showed positive correlations with water orthophosphate (PO43--P), NO3--N, and STOC/STN. Generalized additive model analysis at each site revealed that NO3--N was the main TMCs driver in northern and western Taihu where phytoplankton dominated, whereas PO43--P was the main TMCs driver in eastern Taihu where macrophytes dominated. At the whole lake scale, total phosphorus (TP) and PO43--P were the most important environmental drivers influencing MCs; TP explained 47.4%, 44.2%, and 47.6% while orthophosphate explained 34.8%, 31.2%, and 34.7% of the deviance on TMCs, MC-LR, and MC-YR, respectively. NO3--N also showed a strong effect on MCs variation, especially on MC-YR. Risk assessment showed that both ecological and public health risk has increased in recent years. We conclude that while control of phosphorus and nitrogen input should be a major focus for future lake management, lake zone-specific management strategies may also be important.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, USA
| | - Kaiye Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xing Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
11
|
Xue Q, Xie L, Cheng C, Su X, Zhao Y. Different environmental factors drive the concentrations of microcystin in particulates, dissolved water, and sediments peaked at different times in a large shallow lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116833. [PMID: 36435125 DOI: 10.1016/j.jenvman.2022.116833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Global distribution and health threats of microcystins (MCs) have received much more attention, but there are still significant knowledge gaps in the peak periods and driving factors of MC in different phases of freshwater ecosystems. Thus, we systematically analyzed the annual variation of different MC congeners (-LR, -RR, and -YR, where L, R, and Y respectively represent leucine, arginine, and tyrosine) in particulates, dissolved water, and sediments in three eutrophic bays of Lake Taihu, China. The results indicated that particulate MCs concentration was the highest, followed by dissolved and sediment MC, with the mean concentration of 7.58 μg/L, 1.48 μg/L, and 0.15 μg/g (DW), respectively. Except for particulate MC, the concentrations of the other two types of MC showed significant differences among the three bays. The dominant congeners of the three types of MCs were different, with the highest proportion of MC-LR being observed in sediment MCs and the lowest in particulate MCs. The peak period of the three types of MC was also different, with particulate MCs reaching their peak in July and October, dissolved MCs in May to July and October, and sediment MCs reaching their peak in September. Consistent with our hypothesis, the dynamics of different types of MCs were driven by different environmental factors. Particulate MCs were primarily related to biological parameters, followed by TP and dissolved carbon. By contrast, dissolved MCs strongly correlated with water temperature and dissolved oxygen. While sediment MCs were primarily driven by properties of sediments, followed by different forms of nitrogen in the water column. Our results suggested that particulate and dissolved MCs in northern Lake Taihu pose high health threats, especially in the peak period. Moreover, a more detailed and targeted risk management strategy should be designed to prevent the possible hazards posed by different types of MC.
Collapse
Affiliation(s)
- Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Su
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Sciences, Nanjing 210036, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
12
|
Hua S, Chen J, Wu L, Yu X, Ye J, Li Y, Zhu Y, Tian F. The monthly variation tendency of microcystin-LR levels in the Huangpu River (China) by applications of ELISA and HPLC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56876-56884. [PMID: 35347625 DOI: 10.1007/s11356-022-19791-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In this study, the contents of microcystin-LR (MC-LR) of Microcystis aeruginosa cultures in the laboratory and natural water samples from the Huangpu River in different seasons were detected through enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. Excellent correlation between the two methods was obtained (R2 > 0.99). ELISA was a reliable and simple method with high reproducibility (coefficient of variation < 25%) and satisfactory recovery for the monitoring of low levels of MC-LR. MC-LR concentrations in Huangpu River varied with the seasonal variation, which peaked in August with the temperature over 30 °C and then gradually declined with the decreasing temperature after August. The highest MC-LR concentration in the Huangpu River was below the WHO drinking water quality standard (1 µg/L). These results indicated that warm temperature accelerated the MC-LR synthesis and release, and it is necessary to regularly monitor the MC-LR levels, especially during the high algae period in summer. ELISA can be applied to detect the low levels of MC-LR in the field without complex treatment, avoiding the samples from denaturation and degradation during the transportation. Hence, ELISA is a better alternative of HPLC when HPLC is unavailable, especially when rapid testing is required in routine MC-LR analysis.
Collapse
Affiliation(s)
- Sijia Hua
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jiawen Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liang Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
- Program of Environmental Toxicology, University of California, Riverside, CA, 92521, USA
| | - Xinyue Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yongqiang Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
13
|
Santos AA, Keim CN, Magalhães VF, Pacheco ABF. Microcystin drives the composition of small-sized bacterioplankton communities from a coastal lagoon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33411-33426. [PMID: 35029819 DOI: 10.1007/s11356-022-18613-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial blooms affect biotic interactions in aquatic ecosystems, including those involving heterotrophic bacteria. Ultra-small microbial communities are found in both surface water and groundwater and include diverse heterotrophic bacteria. Although the taxonomic composition of these communities has been described in some environments, the involvement of these small cells in the fate of environmentally relevant molecules has not been investigated. Here, we aimed to test if small-sized microbial fractions from a polluted urban lagoon were able to degrade the cyanotoxin microcystin (MC). We obtained cells after filtration through 0.45 as well as 0.22 μm membranes and characterized the morphology and taxonomic composition of bacteria before and after incubation with and without microcystin-LR (MC-LR). Communities from different size fractions (< 0.22 and < 0.45 μm) were able to remove the dissolved MC-LR. The originally small-sized cells grew during incubation, as shown by transmission electron microscopy, and changed in both cell size and morphology. The analysis of 16S rDNA sequences revealed that communities originated from < 0.22 and < 0.45 μm fractions diverged in taxonomic composition although they shared certain bacterial taxa. The presence of MC-LR shifted the structure of < 0.45 μm communities in comparison to those maintained without toxin. Actinobacteria was initially dominant and after incubation with MC-LR Proteobacteria predominated. There was a clear enhancement of taxa already known to degrade MC-LR such as Methylophilaceae. Small-sized bacteria constitute a diverse and underestimated fraction of microbial communities, which participate in the dynamics of MC-LR in natural environments.
Collapse
Affiliation(s)
- Allan A Santos
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Carolina N Keim
- Laboratory of Geomicrobiology, Institute of Microbiology Paulo de Goés, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Valéria F Magalhães
- Laboratory of Ecophysiology and Toxicology of Cyanobacteria, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Beatriz F Pacheco
- Laboratory of Biological Physics, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Multi-Soil-Layering Technology: A New Approach to Remove Microcystis aeruginosa and Microcystins from Water. WATER 2022. [DOI: 10.3390/w14050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eutrophication of surface waters caused by toxic cyanobacteria such as Microcystis aeruginosa leads to the release of secondary metabolites called Microcystins (MCs), which are heptapeptides with adverse effects on soil microbiota, plants, animals, and human health. Therefore, to avoid succumbing to the negative effects of these cyanotoxins, various remediation approaches have been considered. These techniques involve expensive physico-chemical processes because of the specialized equipment and facilities required. Thus, implementing eco-technologies capable of handling this problem has become necessary. Indeed, multi-soil-layering (MSL) technology can essentially meet this requirement. This system requires little space, needs simple maintenance, and has energy-free operation and high durability (20 years). The performance of the system is such that it can remove 1.16 to 4.47 log10 units of fecal contamination from the water, 98% of suspended solids (SS), 92% of biological oxygen demand (BOD), 98% of chemical oxygen demand (COD), 92% of total nitrogen (TN), and 100% of total phosphorus (TP). The only reported use of the system to remove cyanotoxins has shown a 99% removal rate of MC-LR. However, the mechanisms involved in removing this toxin from the water are not fully understood. This paper proposes reviewing the principal methods employed in conventional water treatment and other technologies to eliminate MCs from the water. We also describe the principles of operation of MSL systems and compare the performance of this technology with others, highlighting some advantages of this technology in removing MCs. Overall, the combination of multiple processes (physico-chemical and biological) makes MSL technology a good choice of cyanobacterial contamination treatment system that is applicable in real-life conditions, especially in rural areas.
Collapse
|
15
|
Kim M, Hong S, Cha J, Kim Y, Lee CE, An Y, Shin KH. Multimedia distributions and the fate of microcystins from freshwater discharge in the Geum River Estuary, South Korea: Applicability of POCIS for monitoring of microalgal biotoxins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118222. [PMID: 34571464 DOI: 10.1016/j.envpol.2021.118222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Here, we investigated the characteristics of the environmental multimedia distribution of microcystins (MCs) introduced from freshwater discharge through the estuary dam of the Geum River. In addition, the applicability of a passive sampling device (polar organic chemical integrative sampler, POCIS) for monitoring MCs was evaluated. Surface water, suspended solids (SS), sediments, and oysters were collected from the inner and outer estuary dam. Seven MC variants were analyzed using HPLC-MS/MS. POCIS was deployed at three sites over one week, and MCs were monitored for four weeks from August to September 2019. Before POCIS was deployed in the field, compounds-specific sampling rates of MCs were determined as functions of water temperature (10, 20, and 30 °C), flow rate (0, 0.38, and 0.76 m s-1), and salinity (0, 15, and 30 psu) in the laboratory. The sampling rates of MCs in POCIS increased significantly with increasing water temperature and flow rate, whereas salinity did not significantly affect the sampling rates between freshwater and saltwater. The MCs in the Geum River Estuary mainly existed as particulate forms (mean: 78%), with relatively low proportions of dissolved forms (mean: 22%), indicating that MCs were mainly contained in cyanobacterial cells. There was no significant correlation among the concentrations of MCs in water, SS, sediments, and oysters. Time-weighted average concentrations of MCs from POCIS were not significantly correlated with the concentrations of MCs in water and oysters. The metabolites of MCs, including MC-LR-GSH, MC-LR-Cys, MC-RR-GSH, and MC-RR-Cys, were detected in oysters (no metabolites were detected in POCIS). Overall, POCIS can be useful for monitoring dissolved MCs in the aquatic ecosystem, particularly in calculating time-weighted average concentrations, but it seems to have limitations in evaluating the contamination status of total MCs, mainly in particulate form.
Collapse
Affiliation(s)
- Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chang-Eon Lee
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoonyoung An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
16
|
Williams TJ, Allen MA, Berengut JF, Cavicchioli R. Shedding Light on Microbial "Dark Matter": Insights Into Novel Cloacimonadota and Omnitrophota From an Antarctic Lake. Front Microbiol 2021; 12:741077. [PMID: 34707591 PMCID: PMC8542988 DOI: 10.3389/fmicb.2021.741077] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The potential metabolism and ecological roles of many microbial taxa remain unknown because insufficient genomic data are available to assess their functional potential. Two such microbial "dark matter" taxa are the Candidatus bacterial phyla Cloacimonadota and Omnitrophota, both of which have been identified in global anoxic environments, including (but not limited to) organic-carbon-rich lakes. Using 24 metagenome-assembled genomes (MAGs) obtained from an Antarctic lake (Ace Lake, Vestfold Hills), novel lineages and novel metabolic traits were identified for both phyla. The Cloacimonadota MAGs exhibited a capacity for carbon fixation using the reverse tricarboxylic acid cycle driven by oxidation of hydrogen and sulfur. Certain Cloacimonadota MAGs encoded proteins that possess dockerin and cohesin domains, which is consistent with the assembly of extracellular cellulosome-like structures that are used for degradation of polypeptides and polysaccharides. The Omnitrophota MAGs represented phylogenetically diverse taxa that were predicted to possess a strong biosynthetic capacity for amino acids, nucleosides, fatty acids, and essential cofactors. All of the Omnitrophota were inferred to be obligate fermentative heterotrophs that utilize a relatively narrow range of organic compounds, have an incomplete tricarboxylic acid cycle, and possess a single hydrogenase gene important for achieving redox balance in the cell. We reason that both Cloacimonadota and Omnitrophota form metabolic interactions with hydrogen-consuming partners (methanogens and Desulfobacterota, respectively) and, therefore, occupy specific niches in Ace Lake.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Lv J, Yuan R, Wang S. Water diversion induces more changes in bacterial and archaeal communities of river sediments than seasonality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112876. [PMID: 34098351 DOI: 10.1016/j.jenvman.2021.112876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/01/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have demonstrated that seasonal variation is often the most important factor affecting aquatic bacterial assemblages. Whether anthropogenic activities can dominate community dynamics remains unknown. Based on 16S rRNA high-throughput sequencing technology, this study revealed and compared the relative influence of water diversions and seasonality on bacterial and archaeal communities in river sediments from a region with obvious seasonality. The results indicate that the influence of water diversion on bacteria and archaea in water-receiving river sediments exceeded the influence of seasonal variation. Water diversion affected microbes by increasing EC, salinity, water flow rate, and organic matter carbon and nitrogen contents. Seasonal variations affected microbes by altering water temperature. Diversion responders but no season responders were classified by statistical methods in the microbial community. Diversion responder numbers were related to nitrogen concentrations, complex organic carbon contents and EC values, which were mainly affected by water diversion. With the joint impact of water diversion and seasonality, the correlations of bacterial and archaeal numbers with environmental factors were obviously weakened due to the increases in the ecological niche breadths of microorganisms. Natural seasonal changes in bacterial and archaeal communities were totally altered by changes in salinity, nutrients, and hydrological conditions induced by anthropogenic water diversions. These results highlight that human activity may be a stronger driver than natural seasonality in the alteration of bacterial and archaeal communities.
Collapse
Affiliation(s)
- Jiali Lv
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China; Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing, 101408, China; Sino-Danish Centre for Education and Research, Beijing, 101408, China
| | - Ruiqiang Yuan
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China; Shanxi Laboratory for Yellow River, Taiyuan, 030006, China.
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources Research, Innovation Academy for Seed Design, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| |
Collapse
|
18
|
Santos AA, Guedes DO, Barros MUG, Oliveira S, Pacheco ABF, Azevedo SMFO, Magalhães VF, Pestana CJ, Edwards C, Lawton LA, Capelo-Neto J. Effect of hydrogen peroxide on natural phytoplankton and bacterioplankton in a drinking water reservoir: Mesocosm-scale study. WATER RESEARCH 2021; 197:117069. [PMID: 33784604 DOI: 10.1016/j.watres.2021.117069] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacterial blooms are increasingly reported worldwide, presenting a challenge to water treatment plants and concerning risks to human health and aquatic ecosystems. Advanced oxidative processes comprise efficient and safe methods for water treatment. Hydrogen peroxide (H2O2) has been proposed as a sustainable solution to mitigate bloom-forming cyanobacteria since this group presents a higher sensitivity compared to other phytoplankton, with no major risks to the environment at low concentrations. Here, we evaluated the effects of a single H2O2 addition (10 mg L-1) over 120 h in mesocosms introduced in a reservoir located in a semi-arid region presenting a Planktothrix-dominated cyanobacterial bloom. We followed changes in physical and chemical parameters and in the bacterioplankton composition. H2O2 efficiently suppressed cyanobacteria, green algae, and diatoms over 72 h, leading to an increase in transparency and dissolved organic carbon, and a decrease in dissolved oxygen and pH, while nutrient concentrations were not affected. After 120 h, cyanobacterial abundance remained low and green algae became dominant. 16S rRNA sequencing revealed that the original cyanobacterial bloom was composed by Planktothrix, Cyanobium and Microcystis. Only Cyanobium increased in relative abundance at 120 h, suggesting regrowth. A prominent change in the composition of heterotrophic bacteria was observed with Exiguobacterium, Paracoccus and Deinococcus becoming the most abundant genera after the H2O2 treatment. Our results indicate that this approach is efficient in suppressing cyanobacterial blooms and improving water quality in tropical environments. Monitoring changes in abiotic parameters and the relative abundance of specific bacterial taxa could be used to anticipate the regrowth of cyanobacteria after H2O2 degradation and to indicate where in the reservoir H2O2 should be applied so the effects are still felt in the water treatment plant intake.
Collapse
Affiliation(s)
- Allan A Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil.
| | - Dayvson O Guedes
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Mário U G Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil; Water Resources Management Company, Fortaleza, Brazil
| | - Samylla Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Ana B F Pacheco
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Sandra M F O Azevedo
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Valéria F Magalhães
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
19
|
First Report on Cyanotoxin (MC-LR) Removal from Surface Water by Multi-Soil-Layering (MSL) Eco-Technology: Preliminary Results. WATER 2021. [DOI: 10.3390/w13101403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyanobacteria blooms occur frequently in freshwaters around the world. Some can produce and release toxic compounds called cyanotoxins, which represent a danger to both the environment and human health. Microcystin-LR (MC-LR) is the most toxic variant reported all over the world. Conventional water treatment methods are expensive and require specialized personnel and equipment. Recently, a multi-soil-layering (MSL) system, a natural and low-cost technology, has been introduced as an attractive cost-effective, and environmentally friendly technology that is likely to be an alternative to conventional wastewater treatment methods. This study aims to evaluate, for the first time, the efficiency of MSL eco-technology to remove MC-LR on a laboratory scale using local materials. To this end, an MSL pilot plant was designed to treat distilled water contaminated with MC-LR. The pilot was composed of an alternation of permeable layers (pozzolan) and soil mixture layers (local sandy soil, sawdust, charcoal, and metallic iron on a dry weight ratio of 70, 10, 10, and 10%, respectively) arranged in a brick-layer-like pattern. MSL pilot was continuously fed with synthetic water containing distilled water contaminated with increasing concentrations of MC-LR (0.18–10 µg/L) at a hydraulic loading rate (HLR) of 200 L m−2 day−1. The early results showed MC-LR removal of above 99%. Based on these preliminary results, the multi-soil-layering eco-technology could be considered as a promising solution to treat water contaminated by MC-LR in order to produce quality water for irrigation or recreational activities.
Collapse
|