1
|
Hatinguais R, Leaves I, Brown GD, Brown AJP, Brock M, Peres da Silva R. CRISPR-based tools for targeted genetic manipulation in pathogenic Sporothrix species. Microbiol Spectr 2023; 11:e0507822. [PMID: 37707447 PMCID: PMC10581184 DOI: 10.1128/spectrum.05078-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Sporothrix brasiliensis is an emerging fungal pathogen frequently associated with zoonotic transmission of sporotrichosis by contaminated cats. Within 25 years, the disease has spread not only throughout Brazil but now to neighboring countries in Latin America. Thermo-dimorphism, melanin, glycans, adhesins, and secreted vesicles have been associated with the ability of Sporothrix species to cause disease in the mammalian host. Although certain virulence factors have been proposed as potential determinants for sporotrichosis, the scarcity of molecular tools for performing reverse genetics in Sporothrix has significantly impeded the dissection of mechanisms underlying the disease. Here, we demonstrate that PEG-mediated protoplast transformation is a powerful method for heterologous gene expression in S. brasiliensis, S. schenckii, and S. chilensis. Combined with CRISPR/Cas9 gene editing, this transformation protocol enabled the deletion of the putative DHN-melanin synthase gene pks1, which is a proposed virulence factor of Sporothrix species. To improve in locus integration of deletion constructs, we deleted the KU80 homolog that is critical for non-homologous end-joining DNA repair. The use of Δku80 strains from S. brasiliensis enhanced homologous-directed repair during transformation resulting in increased targeted gene deletion in combination with CRISPR/Cas9. In conclusion, our CRISPR/Cas9-based transformation protocol provides an efficient tool for targeted gene manipulation in Sporothrix species. IMPORTANCE Sporotrichosis caused by Sporothrix brasiliensis is a disease that requires long periods of treatment and is rapidly spreading across Latin America. The virulence of this fungus and the surge of atypical and more severe presentations of the disease raise the need for an understanding of the molecular mechanisms underlying sporotrichosis, as well as the development of better diagnostics and antifungal therapies. By developing molecular tools for accurate genetic manipulation in Sporothrix, this study addresses the paucity of reliable and reproducible tools for stable genetic engineering of Sporothrix species, which has represented a major obstacle for studying the virulence determinants and their roles in the establishment of sporotrichosis.
Collapse
Affiliation(s)
- Remi Hatinguais
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Matthias Brock
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Roberta Peres da Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
2
|
Zhong J, Zhang J, Ma J, Cai W, Li X, Zhang J. Role of Dectin-1 in immune response of macrophages induced by Fonsecaea monophora wild strain and melanin-deficient mutant strain. Mycology 2023; 15:45-56. [PMID: 38558842 PMCID: PMC10976994 DOI: 10.1080/21501203.2023.2249010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/13/2023] [Indexed: 04/04/2024] Open
Abstract
Chromoblastomycosis is a chronic granulomatous subcutaneous fungal disease caused mainly by Fonsecaea monophora in southern China. Melanin is an important virulence factor in wild strain (Mel+), and the strains lack of the polyketide synthase gene is a melanin-deficient mutant strain (Mel-). We investigated the effect of melanin in F. monophora on Dectin-1 receptor-mediated immune responses in macrophages. Conidia and tiny hyphae of Mel+ and Mel- were co-cultured with THP-1 macrophages expressing normal or low levels of Dectin-1. Compare the killing rate, phagocytosis rate, and expression levels of the inflammatory cytokines tumour necrosis factor-α, interleukin-1β, interleukin-6, and nitric oxide in each group. The results showed that the killing rate, phagocytosis rate, and pro-inflammatory factor levels of Mel+ infected macrophages with normal expression of Dectin-1 were lower than those of Mel-. And the knockdown of Dectin-1 inhibited the phagocytic rate, killing rate, and proinflammatory factor expression in macrophages infected with Mel+ and Mel-. And there was no significant difference in the above indexes between Mel+ and Mel- groups in Dectin-1 knockdown macrophages. In summary, the study reveals that melanin of F. monophora inhibits the immune response effect of the host by hindering its binding to Dectin-1 on the surface of macrophage, which may lead to persistent fungal infections.
Collapse
Affiliation(s)
- Jiaojiao Zhong
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jing Zhang
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianchi Ma
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenying Cai
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiqing Li
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junmin Zhang
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Favilla LD, Herman TS, Goersch CDS, de Andrade RV, Felipe MSS, Bocca AL, Fernandes L. Expanding the Toolbox for Functional Genomics in Fonsecaea pedrosoi: The Use of Split-Marker and Biolistic Transformation for Inactivation of Tryptophan Synthase ( trpB) Gene. J Fungi (Basel) 2023; 9:jof9020224. [PMID: 36836338 PMCID: PMC9963410 DOI: 10.3390/jof9020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Chromoblastomycosis (CBM) is a disease caused by several dematiaceous fungi from different genera, and Fonsecaea is the most common which has been clinically isolated. Genetic transformation methods have recently been described; however, molecular tools for the functional study of genes have been scarcely reported for those fungi. In this work, we demonstrated that gene deletion and generation of the null mutant by homologous recombination are achievable for Fonsecaea pedrosoi by the use of two approaches: use of double-joint PCR for cassette construction, followed by delivery of the split-marker by biolistic transformation. Through in silico analyses, we identified that F. pedrosoi presents the complete enzymatic apparatus required for tryptophan (trp) biosynthesis. The gene encoding a tryptophan synthase trpB -which converts chorismate to trp-was disrupted. The ΔtrpB auxotrophic mutant can grow with external trp supply, but germination, viability of conidia, and radial growth are defective compared to the wild-type and reconstituted strains. The use of 5-FAA for selection of trp- phenotypes and for counter-selection of strains carrying the trp gene was also demonstrated. The molecular tools for the functional study of genes, allied to the genetic information from genomic databases, significantly boost our understanding of the biology and pathogenicity of CBM causative agents.
Collapse
Affiliation(s)
- Luísa Dan Favilla
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Tatiana Sobianski Herman
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Camila da Silva Goersch
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Rosangela Vieira de Andrade
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Maria Sueli Soares Felipe
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Centro Metropolitano, Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Federal District, Brasilia 72220-275, Brazil
- Correspondence:
| |
Collapse
|
4
|
Guegan H, Poirier W, Ravenel K, Dion S, Delabarre A, Desvillechabrol D, Pinson X, Sergent O, Gallais I, Gangneux JP, Giraud S, Gastebois A. Deciphering the Role of PIG1 and DHN-Melanin in Scedosporium apiospermum Conidia. J Fungi (Basel) 2023; 9:jof9020134. [PMID: 36836250 PMCID: PMC9965090 DOI: 10.3390/jof9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1.
Collapse
Affiliation(s)
- Hélène Guegan
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
- Correspondence: ; Tel.: +33-223233496
| | - Wilfried Poirier
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Kevin Ravenel
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Sarah Dion
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Aymeric Delabarre
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Dimitri Desvillechabrol
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Xavier Pinson
- CNRS, INSERM, Biosit UAR 3480 US_S 018, MRic Core Facility, 35000 Rennes, France
| | - Odile Sergent
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Isabelle Gallais
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Jean-Pierre Gangneux
- CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)—UMR_S 1085, 35000 Rennes, France
| | - Sandrine Giraud
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| | - Amandine Gastebois
- University of Angers, University of Brest, IRF, SFR ICAT, 49000 Angers, France
| |
Collapse
|
5
|
A Melanin-Deficient Isolate of Venturia inaequalis Reveals Various Roles of Melanin in Pathogen Life Cycle and Fitness. J Fungi (Basel) 2022; 9:jof9010035. [PMID: 36675856 PMCID: PMC9867426 DOI: 10.3390/jof9010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Venturia inaequalis is the ascomycetous pathogen causing apple scabs and forms dark-pigmented spores and partially melanised infection structures. Although melanin is considered to be essential for the infection of host tissue, a spontaneously occurring melanin-deficient mutant was isolated from an abaxial side of an apple leaf and can be cultivated in vitro as well as in vivo. The morphology and development of the melanin-deficient-isolate SW01 on leaves of susceptible apple plants were compared to that of the corresponding wild-type isolate HS1. White conidia of SW01 were often wrinkled when dry and significantly increased their volume in suspension. Germination and formation of germtubes and appressoria were not impaired; however, the lack of melanisation of the appressorial ring structure at the interface with the plant cuticle significantly reduced the infection success of SW01. The colonisation of leaf tissue by non-melanised subcuticular hyphae was not affected until the initiation of conidiogenesis. Non-melanised conidiophores penetrated the plant cuticle from inside less successfully than the wild type, and the release of white conidia from less solid conidiophores above the cuticle was less frequent. Melanin in the outer cell wall of V. inaequalis was not required for the survival of conidia under ambient temperature or at -20 °C storage conditions, however, promoted the tolerance of the pathogen to copper and synthetic fungicides affecting the stability and function of the fungal cell wall, plasma membrane, respiration (QoIs) and enzyme secretion, but had no effect on the sensitivity to sulphur and SDHIs. The roles of melanin in different steps of the V. inaequalis life cycle and the epidemiology of apple scabs are discussed.
Collapse
|
6
|
Li M, Huang H, Liu J, Zhang X, Li Q, Li D, Luo M, Wang X, Zeng W, Sun J, Liu H, Xi L. Deletion C-terminal thioesterase abolishes melanin biosynthesis, affects metabolism and reduces the pathogenesis of Fonsecaea monophora. PLoS Negl Trop Dis 2022; 16:e0010485. [PMID: 35696422 PMCID: PMC9255740 DOI: 10.1371/journal.pntd.0010485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/05/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
Dematiaceous Fonsecaea monophora is one of the major pathogens of chromoblastomycosis. It has been well established that melanization is catalyzed by the type I polyketide synthase (PKS) in F. monophora. Multidomain protein Type I PKS is encoded by six genes, in which the last enzyme thioesterase (TE) catalyzes the cyclization and releases polyketide. Two PKS genes AYO21_03016 (pks1) and AYO21_10638 have been found in F. monophora and both PKS loci have the same gene arrangement but the TE domain in AYO21_10638 is truncated at 3’- end. TE may be the key enzyme to maintain the function of pks1. To test this hypothesis, we constructed a 3’-end 500 bp deletion mutant of AYO21_03016 (Δpks1-TE-C500) and its complemented strain. We profiled metabolome of this mutant and analyzed the consequences of impaired metabolism in this mutant by fungal growth in vitro and by pathogenesis in vivo. Compared with wild-type strain, we found that the mutant repressed pks1 expression and other 5 genes expression levels were reduced by more than 50%, perhaps leading to a corresponding melanin loss. The mutant also reduced sporulation and delayed germination, became vulnerable to various environmental stresses and was less resistance to macrophage or neutrophil killings in vitro, and less virulence in mice footpad model. Metabolomic analysis indicated that many metabolites were remarkably affected in Δpks1-TE-C500, in particular, an increased nicotinamide and antioxidant glutathione. In conclusion, we confirmed the crucial role of C-terminal TE in maintaining fully function of pks1 in F. monophora. Deletion of TE negatively impacts on the synthesis of melanin and metabolites that eventually affect growth and virulence of F. monophora. Any potential inhibitor of TE then could be a novel antifungal target for drug development. F. monophora is a fungal pathogen that causes chromoblastomycosis. Melanin of F. monophora was synthesized through PKS in which TE is the last enzyme to catalyze the cyclization and release polyketide. Few studies have investigated the effect of TE on the metabolism and pathogenesis of F. monophora. In this study, TE deletion leads to albino phenotype, decreases the expression of other domains of the pks1, and reduces biosynthesis of metabolites. The Δpks1-TE-C500 strain exhibits a changed morphogenesis and becomes less resistant to various environmental stresses. In vitro study, the Δpks1-TE-C500 strain is avirulent and less resistant to macrophages and neutrophils. In conclusion, we demonstrate that the 500 bp C-terminal of TE is essential for the function of pks1, perhaps through its effects on melanin and metabolites to regulate the growth and virulence of F. monophora. Data from this study could inspire an exploration in development of clinical therapy for CBM.
Collapse
Affiliation(s)
- Minying Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Huan Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jun Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohui Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qian Li
- Guangdong Clinical College of Dermatology, Anhui Medical University, Guangzhou, China
| | - Dongmei Li
- Department of Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Mingfen Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyue Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weiying Zeng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangdong, Guangzhou, China
| | - Hongfang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- * E-mail: (HL); (LX)
| | - Liyan Xi
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (HL); (LX)
| |
Collapse
|
7
|
Yang X, Huang X, Zhang L, Du L, Liu Y. The
NDT80
‐like transcription factor
CmNdt80a
affects the conidial formation and germination, mycoparasitism, and cell wall integrity of
Coniothyrium minitans. J Appl Microbiol 2022; 133:808-818. [DOI: 10.1111/jam.15575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoxiang Yang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Xiaoqin Huang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Lei Zhang
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
| | - Lei Du
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
| | - Yong Liu
- Institute of Plant Protection Academy of Agricultural Sciences Sichuan Chengdu China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs Chengdu China
- Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd Chengdu Sichuan P.R. China
| |
Collapse
|