1
|
Huang J, Zhang H, Ma L, Ma N, Luo N, Jin W, Shi J, Xu S, Xiong Y. Rhein and hesperidin nanoparticles remodel tumor immune microenvironment by reducing CAFs and CCL2 secreted by CAAs for efficient triple-negative breast cancer therapy. Int Immunopharmacol 2024; 141:113001. [PMID: 39186835 DOI: 10.1016/j.intimp.2024.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
In triple-negative breast cancer (TNBC), the tumor immune microenvironment (TIME) is a highly heterogeneous ecosystem that exerts indispensable roles in tumorigenesis and tumor progression. Cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs) are the main matrix components in the TIME of TNBC. CAFs mediate the edesmoplastic response, which is a major driver of the immunosuppressive microenvironment to promote tumor growth. In addition, CAAs, a type of tumor-educated adipocyte, participate in crosstalk with breast cancer and are capable of secreting various cytokines, adipokines and chemokines, especially C-C Motif Chemokine Ligand 2 (CCL2), resulting in changes of cancer cell phenotype and function. Therefore, how to treat tumors by regulating the CAFs and the secretion of CCL2 by CAAs in TIME is investigated here. Our research group previously found that rhein (Rhe) has been identified as effective against CAFs, while hesperidin (Hes) could effectively diminish CCL2 secretion by CAAs. Inspired by the above, we developed unique PLGA-based nanoparticles loaded with Rhe and Hes (RH-NP) using the emulsion solvent diffusion method. The RH-NP particles have an average size of 114.1 ± 0.98 nm. RH-NP effectively reduces CAFs and inhibits CCL2 secretion by CAAs, promoting increased infiltration of cytotoxic T cells and reducing immunosuppressive cell presence within tumors. This innovative, safe, low-toxic, and highly effective anti-tumor strategy could be prospective in TNBC treatment.
Collapse
Affiliation(s)
- Jingyi Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ninghui Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ningchao Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Wanyu Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shujun Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
2
|
Feng S, Peng X, Deng Y, Luo Y, Shi S, Wei X, Pu X, Yu X. Biomimetic Nanozyme-Decorated Smart Hydrogel for Promoting Chronic Refractory Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59862-59879. [PMID: 39441846 DOI: 10.1021/acsami.4c13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Chronic refractory wounds have become a serious threat to human health and are characterized by prolonged inflammation, recurrent bacterial infections, and elevated ROS levels. However, current therapeutic strategies usually target a unilateral healing function and are unable to tackle the complexity and sensitivity of chronic refractory wound healing. This study fabricated a biomimetic nanozyme based on rhein (Cu-rhein NSs), which effectively mimics the activity of superoxide dismutase (SOD) for scavenging various free radicals. Additionally, zinc oxide microspheres (ZnO MSs) were prepared to enhance the antibacterial activity and mechanical properties of the modified hydrogel. Cu-rhein NSs and ZnO MSs were comodified onto an extracellular matrix-mimetic dual-network smart hydrogel constructed from oxidized sodium alginate, gelatin, and borax via dynamic borate and Schiff base bonds. The smart hydrogel presented the good biocompatibility and targeted the unique acidic microenvironment with high oxidative stress of chronic refractory wounds, intelligently releasing bionic nanozymes to effectively eliminate bacteria, reduce inflammatory responses, and scavenge multiple free radicals for reducing ROS. In vivo experiments on the rat model based on diabetic infection showed that the smart hydrogel could effectively eliminate bacteria, promote vascular regeneration and collagen deposition, reduce inflammatory response, and accelerate the healing of diabetic-infected wounds (almost complete healing within 14 days). The advantages of an intelligent, biomimetic tissue regeneration cascade management strategy against diabetic infected wound healing are highlighted.
Collapse
Affiliation(s)
- Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yiqing Deng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shubin Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyun Pu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
3
|
Zhang Y, Jiang Y, Shang K, Ge C, Fang J, Liu S. Updated pharmaceutical progress on plant antibiotic rhein and its analogs: Bioactivities, structure-activity relationships and future perspectives. Bioorg Med Chem 2024; 113:117895. [PMID: 39259985 DOI: 10.1016/j.bmc.2024.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Rhein, as a plant antibiotic, demonstrates a broad spectrum of pharmacological effects. Nevertheless, its limited water solubility, low bioavailability, and potential hepatotoxicity and nephrotoxicity making it difficult to directly become a medicine, thereby imposing significant constraints on its clinical application. In recent decades, extensive researches have been proceeded on the multifaceted structural modifications of rhein, resulting in notable improvements on pharmacological activities and druggabilities. This review offers a comprehensive overview and advanced update on the biological potential and structural-activity relationships (SARs) of various rhein derivatives, delineating the sites of structural modification and corresponding activity trends of rhein derivatives for future.
Collapse
Affiliation(s)
- Yindi Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Kaiqi Shang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Chengyu Ge
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Jing Fang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China.
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China.
| |
Collapse
|
4
|
Wan M, Gan A, Dai J, Lin F, Wang R, Wu B, Yan T, Jia Y. Rhein induces apoptosis of AGS and MGC803 cells by regulating the Ras/PI3K/AKT and p38/MAPK signaling pathway. J Pharm Pharmacol 2024:rgae115. [PMID: 39393789 DOI: 10.1093/jpp/rgae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/18/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES Rhein is one of the main bioactive compounds in the Polygonaceae plant, and has been proven to have anti-cancer activity in some reports. But the mechanism of Rhein in the treatment of gastric cancer (GC) is limited reported. In this research, network pharmacology combined with in vitro experiments was used for systematically studying the mechanism of Rhein. METHODS Network pharmacology confirmed the major effect signaling pathway and key targets of Rhein in the treatment of GC. Cell viability assay, colony formation assay, fluorescence probe assay, apoptosis assay, western blot and qRT-PCR verified the mechanism of Rhein in the treatment of GC cells (AGS and MGC803 cells). KEY FINDINGS The results showed that Rhein significantly induced the apoptosis process of AGS and MGC803 cells by regulating the Ras/phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT) and the p38/mitogen-activated protein kinase signaling pathways. The AKT activator (SC79) and p38 inhibitor (SB202190) inhibited Rhein-induced apoptosis. CONCLUSIONS All results proved that Rhein could be recognized as a potential natural drug for the treatment of GC.
Collapse
Affiliation(s)
- Meiqi Wan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Anna Gan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jun Dai
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Fei Lin
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ruixuan Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
5
|
Liu X, Liu Y, Song M, Zhu K, Shen J. A Rhein-Based Derivative Targets Staphylococcus aureus. Antibiotics (Basel) 2024; 13:882. [PMID: 39335055 PMCID: PMC11428220 DOI: 10.3390/antibiotics13090882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The rise in antibiotic-resistant bacteria highlights the need for novel antimicrobial agents. This study presents the design and synthesis of a series of rhein (RH)-derived compounds with improved antimicrobial properties. The lead compound, RH17, exhibited a potent antibacterial activity against Staphylococcus aureus (S. aureus) isolates, with minimum inhibitory concentrations (MICs) ranging from 8 to 16 μg/mL. RH17 disrupted bacterial membrane stability, hindered metabolic processes, and led to an increase in reactive oxygen species (ROS) production. These mechanisms were confirmed through bacterial growth inhibition assays, membrane function assessments, and ROS detection. Notably, RH17 outperformed the parent compound RH and demonstrated bactericidal effects in S. aureus. The findings suggest that RH17 is a promising candidate for further development as an antimicrobial agent against Gram-positive pathogens, addressing the urgent need for new therapies.
Collapse
Affiliation(s)
- Xiaojia Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yuan Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Meirong Song
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
6
|
Zhang W, Cai L, Gan J, Zhao Y. Photothermal responsive porous hollow microneedles as Chinese medicine versatile delivery system for wound healing. SMART MEDICINE 2024; 3:e20240007. [PMID: 39420949 PMCID: PMC11425051 DOI: 10.1002/smmd.20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 10/19/2024]
Abstract
Chinese medicine is identified as a candidate for wound healing. Attempts in this field tend to develop efficient dosage forms for delivering Chinese medicine with low side effects. In this paper, we proposed novel photothermal responsive porous hollow microneedles (PRPH-MNs) as a versatile Chinese medicine delivery system for efficient antibacterial wound treatment. The PRPH-MNs are composed of porous resin shells with good mechanical property, hydrogel cores, and a photothermal graphene oxide hybrid substrate. The hollow structure provides sufficient space for loading the drug dispersed hydrogel, while the porous resin shells could not only block the direct contact between drugs and wound sites but also provide channels for facilitating the drug release from the core. In addition, benefiting from the photothermal effect of their substrate, the PRPH-MNs could be heated under near-infrared (NIR) irradiation for controllable promotion of drug release. Based on these features, we have proved that the antibacterial Chinese medicine Rhein loaded PRPH-MNs were effective in promoting wound healing due to their good antibacterial property and on-demand drug release. Thus, we believe that the proposed PRPH-MNs are valuable for delivery of different drugs for clinical applications.
Collapse
Affiliation(s)
- Wanyue Zhang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Lijun Cai
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Shenzhen Research InstituteSoutheast UniversityShenzhenChina
| |
Collapse
|
7
|
Sun H, Xiao D, Li X, Sun T, Meng F, Shao X, Ding Y, Li Y. Study on the chemical composition and anti-fungi activities of anthraquinones and its glycosides from Rumex japonicus Houtt. J Nat Med 2024; 78:929-951. [PMID: 39103726 DOI: 10.1007/s11418-024-01834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Fungi, such as Trichophyton rubrum (T. rubrum) and Microsporum canis Bodin Anamorph (M. canis Bodin Anamorph) are the main pathogens of dermatophysis. According to ancient books records, Rumex japonicus Houtt. (RJH) has a miraculous effect on the treatment of dermatophysis. To reveal the anti-fungi (T. rubrum and M. canis Bodin Anamorph) components and its mechanism of the Rumex japonicus Houtt. The vinegar extraction and alcohol precipitation, HPLC and nuclear magnetic resonance spectroscopy (NMR) were employed for analyzing the chemical compositions of RJH; in vitro anti-fungal experiment was investigated including test the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC), spore germination rate, nucleic acid, protein leakage rate, biofilm structure, and the mechanism of anti-fungal and anti-fungal biofilms in RJH. Seven anthraquinones and their glycoside compounds were obtained in this study respectively, such as chrysophanol, physcion, aloe-emodin, emodin, rhein, emodin-8-O-β-D-glucoside and chrysophanol-8-O-β-D-glucoside. In vitro anti-fungal experiment results showed that RJH extracts have good anti-fungal activity for dermatophytic fungi. Among them, the MIC of the rhein, emodin and aloe-emodin against T. rubrum are 1.9 µg/ml, 3.9 µg/ml and 15.6 µg/ml, respectively; the MIC of emodin and aloe-emodin against M. canis Bodin Anamorph are 7.8 µg/ml and 62.5 µg/ml, respectively. In addition, its active components can inhibit fungal spore germination and the formation of bud tube, change cell membrane permeability, prevent hyphal growth, destroy biofilm structure, and down-regulate the expression of agglutinin-like sequence family 1 of the adhesion phase of biofilm growth. The study shows that RJH play a fungicidal role.
Collapse
Affiliation(s)
- He Sun
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Dandan Xiao
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756, Korea
| | - Xue Li
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Tong Sun
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Fanying Meng
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Xinting Shao
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China
| | - Yuling Ding
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China.
| | - Yong Li
- Department of School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, People's Republic of China.
| |
Collapse
|
8
|
Liang X, Ding L, Ma J, Li J, Cao L, Liu H, Teng M, Li Z, Peng Y, Chen H, Zheng Y, Cheng H, Liu G. Enhanced Mechanical Strength and Sustained Drug Release in Carrier-Free Silver-Coordinated Anthraquinone Natural Antibacterial Anti-Inflammatory Hydrogel for Infectious Wound Healing. Adv Healthc Mater 2024; 13:e2400841. [PMID: 38725393 DOI: 10.1002/adhm.202400841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Indexed: 05/16/2024]
Abstract
The persistent challenge of healing infectious wounds and the rise of bacterial resistance represent significant hurdles in contemporary medicine. In this study, based on the natural small molecule drug Rhein self-assembly to form hydrogels and coordinate assembly with silver ions (Ag+), a sustained-release carrier-free hydrogel with compact structure is constructed to promote the repair of bacterial-infected wounds. As a broad-spectrum antimicrobial agent, Ag+ can avoid the problem of bacterial resistance caused by the abuse of traditional antibiotics. In addition, due to the slow-release properties of Rhein hydrogel, continuous effective concentration of Ag+ at the wound site can be ensured. The assembly of Ag+ and Rhein makes the hydrogel system with enhanced mechanical stability. More importantly, it is found that Rhein effectively promotes skin tissue regeneration and wound healing by reprogramming M1 macrophages into M2 macrophages. Further mechanism studies show that Rhein realizes its powerful anti-inflammatory activity through NRF2/HO-1 activation and NF-κB inhibition. Thus, the hydrogel system combines the excellent antibacterial properties of Ag+ with the excellent anti-inflammatory and tissue regeneration ability of Rhein, providing a new strategy for wound management with dual roles.
Collapse
Affiliation(s)
- Xiaoliu Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Linyu Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiaxin Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Lei Cao
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Minglei Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhenjie Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yisheng Peng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hu Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau SAR, 999078, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang'an Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
9
|
Wang X, Chen C, Hu J, Liu C, Ning Y, Lu F. Current strategies for monitoring and controlling bacterial biofilm formation on medical surfaces. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116709. [PMID: 39024943 DOI: 10.1016/j.ecoenv.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Biofilms, intricate microbial communities that attach to surfaces, especially medical devices, form an exopolysaccharide matrix, which enables bacteria to resist environmental pressures and conventional antimicrobial agents, leading to the emergence of multi-drug resistance. Biofilm-related infections associated with medical devices are a significant public health threat, compromising device performance. Therefore, developing effective methods for supervising and managing biofilm growth is imperative. This in-depth review presents a systematic overview of strategies for monitoring and controlling bacterial biofilms. We first outline the biofilm creation process and its regulatory mechanisms. The discussion then progresses to advancements in biosensors for biofilm detection and diverse treatment strategies. Lastly, this review examines the obstacles and new perspectives associated with this domain to facilitate the advancement of innovative monitoring and control solutions. These advancements are vital in combating the spread of multi drug-resistant bacteria and mitigating public health risks associated with infections from biofilm formation on medical instruments.
Collapse
Affiliation(s)
- Xiaoqi Wang
- Department of integrated traditional Chinese and Western Medicine, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chunjing Chen
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Chang Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| |
Collapse
|
10
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
11
|
Zhu L, Zhang H, Zhang X, Xia L. RNA m6A methylation regulators in sepsis. Mol Cell Biochem 2024; 479:2165-2180. [PMID: 37659034 DOI: 10.1007/s11010-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
N6-methyladenosine (m6A) modification is a class of epitope modifications that has received significant attention in recent years, particularly in relation to its role in various diseases, including sepsis. Epigenetic research has increasingly focused on m6A modifications, which is influenced by the dynamic regulation of three protein types: ‟Writers" (such as METTL3/METTL14/WTAP)-responsible for m6A modification; ‟Erasers" (FTO and ALKBH5)-involved in m6A de-modification; and ‟Readers" (YTHDC1/2, YTHDF1/2/3)-responsible for m6A recognition. Sepsis, a severe and fatal infectious disease, has garnered attention regarding the crucial effect of m6A modifications on its development. In this review, we attempted to summarize the recent studies on the involvement of m6A and its regulators in sepsis, as well as the significance of m6A modifications and their regulators in the development of novel drugs and clinical treatment. The potential value of m6A modifications and modulators in the diagnosis, treatment, and prognosis of sepsis has also been discussed.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
12
|
Wu X, Zang R, Qiu Y, Yang N, Liu M, Wei S, Xu X, Diao Y. Self-Assembly of Rhein and Matrine Nanoparticles for Enhanced Wound Healing. Molecules 2024; 29:3326. [PMID: 39064904 PMCID: PMC11279319 DOI: 10.3390/molecules29143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Carrier-free self-assembly has gradually shifted the focus of research on natural products, which effectively improve the bioavailability and the drug-loading rate. However, in spite of the existing studies, the development of self-assembled natural phytochemicals that possess pharmacological effects still has scope for further exploration and enhancement. Herein, a nano-delivery system was fabricated through the direct self-assembly of Rhein and Matrine and was identified as a self-assembled Rhein-Matrine nanoparticles (RM NPs). The morphology of RM NPs was characterized by TEM. The molecular mechanisms of self-assembly were explored using FT-IR, 1H NMR, and molecular dynamics simulation analysis. Gelatin methacryloyl (GelMA) hydrogel was used as a drug carrier for controlled release and targeted delivery of RM NPs. The potential wound repair properties of RM NPs were evaluated on a skin wound-healing model. TEM and dynamic light scattering study demonstrated that the RM NPs were close to spherical, and the average size was approximately 75 nm. 1H NMR of RM NPs demonstrated strong and weak changes in the interaction energies during self-assembly. Further molecular dynamics simulation analysis predicted the self-assembly behavior. An in vivo skin wound-healing model demonstrated that RM NPs present better protection effect against skin damages. Taken together, RM NPs are a new self-assembly system; this may provide new directions for natural product applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (X.W.); (R.Z.); (Y.Q.); (N.Y.); (M.L.); (S.W.); (X.X.)
| |
Collapse
|
13
|
Galdiero M, Trotta C, Schettino MT, Cirillo L, Sasso FP, Petrillo F, Petrillo A. Normospermic Patients Infected With Ureaplasma parvum: Role of Dysregulated miR-122-5p, miR-34c-5, and miR-141-3p. Pathog Immun 2024; 8:16-36. [PMID: 38223489 PMCID: PMC10783813 DOI: 10.20411/pai.v8i2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Background Ureaplasma parvum (UP) is a causative agent of non-gonococcal urethritis, involved in the pathogenesis of prostatitis and epididymitis, and it could impair human fertility. Although UP infection is a frequent cause of male infertility the study evidence assessing their prevalence and the association in patients with infertility is still scarce. The molecular processes leading to defects in spermatozoa quality are not completely investigated. MicroRNAs (miRNAs) have been extensively reported as gene regulatory molecules on post-transcriptional levels involved in various biological processes such as gametogenesis, embryogenesis, and the quality of sperm, oocyte, and embryos. Methods Therefore, the study design was to demonstrate that miRNAs in body fluids like sperm could be utilized as non-invasive diagnostic biomarkers for pathological and physiological conditions such as infertility. A post-hoc bioinformatics analysis was carried out to predict the pathways modulated by the miRNAs dysregulated in the differently motile spermatozoa. Results Here it is shown that normospermic patients infected by UP had spermatozoa with increased quantity of superoxide anions, reduced expression of miR-122-5p, miR-34c-5, and increased miR-141-3p compared with non-infected normospermic patients. This corresponded to a reduction of sperm motility in normospermic infected patients compared with normospermic non-infected ones. A target gene prediction presumed that an essential role of these miRNAs resided in the regulation of lipid kinase activity, accounting for the changes in the constitution of spermatozoa membrane lipids caused by UP. Conclusions Altogether, the data underline the influence of UP on epigenetic mechanisms regulating spermatozoa motility.
Collapse
Affiliation(s)
- Marilena Galdiero
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy. Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Carolo Trotta
- Department of Gynecology and Obstetrics University of Campania Luigi Vanvitelli Naples Italy
| | - Maria Teresa Schettino
- Department of Gynecology and Obstetrics University of Campania Luigi Vanvitelli Naples Italy
| | - Luigi Cirillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples Italy
| | | | - Francesco Petrillo
- Department of Experimental Medicine, Section of Microbiology and Virology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy. Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | | |
Collapse
|
14
|
Han L, Zang T, Tan L, Liang D, Long T, Liu X, Shen X, Ren H, Li Z, Lu Z, Tang S, Liao X, Liu Y, Zhang C, Sun J. Self-assembly of H 2S-responsive nanoprodrugs based on natural rhein and geraniol for targeted therapy against Salmonella Typhimurium. J Nanobiotechnology 2023; 21:483. [PMID: 38104180 PMCID: PMC10725032 DOI: 10.1186/s12951-023-02256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Salmonellosis is a globally extensive food-borne disease, which threatens public health and results in huge economic losses in the world annually. The rising prevalence of antibiotic resistance in Salmonella poses a significant global concern, emphasizing an imperative to identify novel therapeutic agents or methodologies to effectively combat this predicament. In this study, self-assembly hydrogen sulfide (H2S)-responsive nanoprodrugs were fabricated with poly(α-lipoic acid)-polyethylene glycol grafted rhein and geraniol (PPRG), self-assembled into core-shell nanoparticles via electrostatic, hydrophilic and hydrophobic interactions, with hydrophilic exterior and hydrophobic interior. The rhein and geraniol are released from self-assembly nanoprodrugs PPRG in response to Salmonella infection, which is known to produce hydrogen sulfide (H2S). PPRG demonstrated stronger antibacterial activity against Salmonella compared with rhein or geraniol alone in vitro and in vivo. Additionally, PPRG was also able to suppress the inflammation and modulate gut microbiota homeostasis. In conclusion, the as-prepared self-assembly nanoprodrug sheds new light on the design of natural product active ingredients and provides new ideas for exploring targeted therapies for specific Enteropathogens. Graphical illustration for construction of self-assembly nanoprodrugs PPRG and its antibacterial and anti-inflammatory activities on experimental Salmonella infection in mice.
Collapse
Affiliation(s)
- Lu Han
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Tao Zang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Lulu Tan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Dunsheng Liang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Tengfei Long
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xuwei Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xiaofan Shen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - ZhiPeng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhaoxiang Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Shengqiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, People's Republic of China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
15
|
Palaniyappan S, Sridhar A, Kari ZA, Téllez-Isaías G, Ramasamy T. Potentials of Aloe barbadensis inclusion in fish feeds on resilience to Aeromonas hydrophila infection in freshwater fish Labeo rohita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1435-1459. [PMID: 37996691 DOI: 10.1007/s10695-023-01266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Aquatic bacterial pathogens can cause severe economic loss in aquaculture industry. An opportunistic pathogen, Aeromonas hydrophila is responsible for Motile Aeromonas Septicemia, leading to high mortality rates in fish. The present study was focused on the efficacy of Aloe barbadensis replacing fishmeal diets on hematological, serum biochemical, antioxidant, histopathological parameters, and disease resistance against A. hydrophila infection in Labeo rohita. Isonitrogenous fishmeal replaced diets (FMR) were prepared with varying levels of A. barbadensis at D1 (0%) (control), D2 (25%), D3 (50%), D4 (75%) and D5 (100%) then fed to L. rohita. After 60 days of post-feeding, the experimental fish were challenged with A. hydrophila. Blood and organs were collected and examined at 1- and 15-days post infection (dpi). The results demonstrated that on 1 dpi, white blood cells (WBC), total protein, cholesterol and low-density lipoprotein (LDL) levels were significantly increased in D3 diet fed groups. The D2 and D3 diet fed group showed decreasing trends of serum glutamic pyruvic transaminase (SGPT) and antioxidant enzymes activity on 15 dpi. The histopathological architecture results clearly illustrated that the D3 diet fed group had given a higher protective effect by reducing the pathological changes associated with A. hydrophila infection in liver, intestine and muscle. Higher percentage of survival rate was also observed in D3 diet fed group. Therefore, the present study suggested that the dietary administration of A. barbadensis up to 50% fishmeal replacement (D3 diet) can elicit earlier antioxidant activity, innate immune response and improve survival rate in L. rohita against A. hydrophila infection.
Collapse
Affiliation(s)
- Sivagaami Palaniyappan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Malaysia
| | | | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
16
|
Capuano N, Amato A, Dell’Annunziata F, Giordano F, Folliero V, Di Spirito F, More PR, De Filippis A, Martina S, Amato M, Galdiero M, Iandolo A, Franci G. Nanoparticles and Their Antibacterial Application in Endodontics. Antibiotics (Basel) 2023; 12:1690. [PMID: 38136724 PMCID: PMC10740835 DOI: 10.3390/antibiotics12121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Root canal treatment represents a significant challenge as current cleaning and disinfection methodologies fail to remove persistent bacterial biofilms within the intricate anatomical structures. Recently, the field of nanotechnology has emerged as a promising frontier with numerous biomedical applications. Among the most notable contributions of nanotechnology are nanoparticles, which possess antimicrobial, antifungal, and antiviral properties. Nanoparticles cause the destructuring of bacterial walls, increasing the permeability of the cell membrane, stimulating the generation of reactive oxygen species, and interrupting the replication of deoxyribonucleic acid through the controlled release of ions. Thus, they could revolutionize endodontics, obtaining superior results and guaranteeing a promising short- and long-term prognosis. Therefore, chitosan, silver, graphene, poly(lactic) co-glycolic acid, bioactive glass, mesoporous calcium silicate, hydroxyapatite, zirconia, glucose oxidase magnetic, copper, and zinc oxide nanoparticles in endodontic therapy have been investigated in the present review. The diversified antimicrobial mechanisms of action, the numerous applications, and the high degree of clinical safety could encourage the scientific community to adopt nanoparticles as potential drugs for the treatment of endodontic diseases, overcoming the limitations related to antibiotic resistance and eradication of the biofilm.
Collapse
Affiliation(s)
- Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Alessandra Amato
- Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, 80138 Naples, Italy;
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Federica Di Spirito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Pragati Rajendra More
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Stefano Martina
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alfredo Iandolo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| |
Collapse
|
17
|
Hochma E, Hovor I, Nakonechny F, Nisnevitch M. Photo- and Sono-Active Food Colorants Inactivating Bacteria. Int J Mol Sci 2023; 24:15126. [PMID: 37894807 PMCID: PMC10607222 DOI: 10.3390/ijms242015126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Food colorants are commonly used as excipients in pharmaceutical and nutraceutical fields, but they have a wide range of other potential applications, for instance, as cytotoxic drugs or mediators of physical antimicrobial treatments. The photodynamic antibacterial activity of several edible food colorants is reported here, including E127, E129, E124, E122, E133, and E150a, alongside Rhein, a natural lipophilic antibacterial and anticancer compound found in medicinal plants. Minimal inhibitory concentration (MIC) values for S. aureus and E. coli showed that E127 and Rhein were effective against both bacteria, while other colorants exhibited low activity against E. coli. In some cases, dark pre-incubation of the colorants with Gram-positive S. aureus increased their photodynamic activity. Adding Rhein to E127 increased the photodynamic activity of the latter in a supportive mode. Optional sensing mechanism pathways of combined E127/Rhein action were suggested. The antibacterial activity of the studied colorants can be ranged as follows: E127/Rhein >> E127 >> E150a > E122 > E124 >> E129 ≈ E133. E127 was also found to exhibit photodynamic properties. Short ultrasonic treatment before illumination caused intensification of E127 photodynamic activity against E. coli when applied alone and especially in combination with Rhein. Food colorants exhibiting photo- and sonodynamic properties may have good potential in food preservation.
Collapse
Affiliation(s)
| | | | | | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (E.H.); (I.H.); (F.N.)
| |
Collapse
|
18
|
Palma F, Dell'Annunziata F, Folliero V, Foglia F, Marca RD, Zannella C, De Filippis A, Franci G, Galdiero M. Cupferron impairs the growth and virulence of Escherichia coli clinical isolates. J Appl Microbiol 2023; 134:lxad222. [PMID: 37796875 DOI: 10.1093/jambio/lxad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
AIMS Multidrug resistance is a worrying problem worldwide. The lack of readily available drugs to counter nosocomial infections requires the need for new interventional strategies. Drug repurposing represents a valid alternative to using commercial molecules as antimicrobial agents in a short time and with low costs. Contextually, the present study focused on the antibacterial potential of the ammonium salt N-nitroso-N-phenylhydroxylamine (Cupferron), evaluating the ability to inhibit microbial growth and influence the main virulence factors. METHODS AND RESULTS Cupferron cytotoxicity was checked via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays. The antimicrobial activity was assessed through the Kirby-Bauer disk diffusion test, broth microdilution method, and time-killing kinetics. Furthermore, the impact on different stages of the biofilm life cycle, catalase, swimming, and swarming motility was estimated via MTT and crystal violet (CV) assay, H2O2 sensitivity, and motility tests, respectively. Cupferron exhibited <15% cytotoxicity at 200 µg/mL concentration. The 90% bacterial growth inhibitory concentrations (MIC90) values recorded after 24 hours of exposure were 200 and 100 µg/mL for multidrug-resistant (MDR) and sensitive strains, respectively, exerting a bacteriostatic action. Cupferron-treated bacteria showed increased susceptibility to biofilm production, oxidative stress, and impaired bacterial motility in a dose-dependent manner. CONCLUSIONS In the new antimicrobial compounds active research scenario, the results indicated that Cupferron could be an interesting candidate for tackling Escherichia coli infections.
Collapse
Affiliation(s)
- Francesca Palma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Federica Dell'Annunziata
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Francesco Foglia
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Roberta Della Marca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
19
|
Yarmohammadi E, Khanjani M, Khamverdi Z, Savari M, Taherkhani A. Herbal Metabolites as Potential Carbonic Anhydrase Inhibitors: Promising Compounds for Cancer and Metabolic Disorders. J Obes Metab Syndr 2023; 32:247-258. [PMID: 37726113 PMCID: PMC10583767 DOI: 10.7570/jomes23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Background Human carbonic anhydrases (CAs) play a role in various pathological mechanisms by controlling intracellular and extracellular pH balance. Irregular expression and function of CAs have been associated with multiple human diseases, such as obesity, cancer, glaucoma, and epilepsy. In this work, we identify herbal compounds that are potential inhibitors of CA VI. Methods We used the AutoDock tool to evaluate binding affinity between the CA VI active site and 79 metabolites derived from flavonoids, anthraquinones, or cinnamic acids. Compounds ranked at the top were chosen for molecular dynamics (MD) simulations. Interactions between the best CA VI inhibitors and residues within the CA VI active site were examined before and after MD analysis. Additionally, the effects of the most potent CA VI inhibitor on cell viability were ascertained in vitro through the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results Kaempferol 3-rutinoside-4-glucoside, orientin, kaempferol 3-rutinoside-7-sophoroside, cynarin, and chlorogenic acid were estimated to establish binding with the CA VI catalytic domain at the picomolar scale. The range of root mean square deviations for CA VI complexes with kaempferol 3-rutinoside-4-glucoside, aloe-emodin 8-glucoside, and cynarin was 1.37 to 2.05, 1.25 to 1.85, and 1.07 to 1.54 Å, respectively. The MTT assay results demonstrated that cynarin had a substantial effect on HCT-116 cell viability. Conclusion This study identified several herbal compounds that could be potential drug candidates for inhibiting CA VI.
Collapse
Affiliation(s)
- Ebrahim Yarmohammadi
- Department of Restorative Dentistry, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Khanjani
- Department of Restorative Dentistry, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Khamverdi
- Department of Restorative Dentistry, School of Dentistry, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Savari
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Zhang M, Cai L, Luo X, Li X, Zhang T, Wu F, Zhang Y, Lu R. Effect of sublethal dose of chloramphenicol on biofilm formation and virulence in Vibrio parahaemolyticus. Front Microbiol 2023; 14:1275441. [PMID: 37822746 PMCID: PMC10562556 DOI: 10.3389/fmicb.2023.1275441] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Vibrio parahaemolyticus isolates are generally very sensitive to chloramphenicol. However, it is usually necessary to transfer a plasmid carrying a chloramphenicol resistance gene into V. parahaemolyticus to investigate the function of a specific gene, and the effects of chloramphenicol on bacterial physiology have not been investigated. In this work, the effects of sublethal dose of chloramphenicol on V. parahaemolyticus were investigated by combined utilization of various phenotypic assays and RNA sequencing (RNA-seq). The results showed that the growth rate, biofilm formation capcity, c-di-GMP synthesis, motility, cytoxicity and adherence activity of V. parahaemolyticus were remarkably downregulated by the sublethal dose of chloramphenicol. The RNA-seq data revealed that the expression levels of 650 genes were significantly differentially expressed in the response to chloramphenicol stress, including antibiotic resistance genes, major virulence genes, biofilm-associated genes and putative regulatory genes. Majority of genes involved in the synthesis of polar flagellum, exopolysaccharide (EPS), mannose-sensitive haemagglutinin type IV pilus (MSHA), type III secretion systems (T3SS1 and T3SS2) and type VI secretion system 2 (T6SS2) were downregulated by the sublethal dose of chloramphenicol. Five putative c-di-GMP metabolism genes were significantly differentially expressed, which may be the reason for the decrease in intracellular c-di-GMP levels in the response of chloramphenicol stress. In addition, 23 genes encoding putative regulators were also significantly differentially expressed, suggesting that these regulators may be involved in the resistance of V. parahaemolyticus to chloramphenicol stress. This work helps us to understand how chloramphenicol effect on the physiology of V. parahaemolyticus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Liyan Cai
- Physical Examination Center, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Fei Wu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Renfei Lu
- Department of Clinical Laboratory, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| |
Collapse
|
21
|
Zhou Y, Liu Z, Wen J, Zhou Y, Lin H. The inhibitory effect of berberine chloride hydrate on Streptococcus mutans biofilm formation at different pH values. Microbiol Spectr 2023; 11:e0217023. [PMID: 37747238 PMCID: PMC10580975 DOI: 10.1128/spectrum.02170-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023] Open
Abstract
Streptococcus mutans (S. mutans) is one of the major cariogenic bacteria of dental caries owing to its ability to adhere to tooth surfaces and biofilm formation. Berberine chloride hydrate (BH), a quaternary ammonium salt alkaloid, has diverse pharmacological efforts against microorganisms. However, the effect of BH on S. mutans biofilm has not been reported. Considering that berberine is a quaternary ammonium salt alkaloid, which needs to adapt to a large variation in pH values and the acid resistance of S. mutans, we employed three groups including pH 5 (acidic), pH 8 (alkaline), and unprocessed group (neutral) to examine the antibiofilm activities of BH against S. mutans during different pH values. In this study, we found BH effectively suppresses S. mutans biofilm formation as well as its cariogenic virulence including acid production and EPS synthesis significantly, and the inhibitory effort was reduced under acidic condition whereas elevated under alkaline condition. In addition, we preliminarily explored the influence of pH values on the structural stability and biosafety of BHas well as the underlying mechanism of inhibition of S. mutans biofilm formation with BH. Our study showed BH could maintain a good structural stability and low toxicity to erythrocytes at different pH values. And BH could downregulate the expression of srtA, spaP, and gbpC, which play critical roles in the adhesion process, promoting bacterial colonization and biofilm formation. Furthermore, comX and ldh expression levels were downregulated in BH-treated group, which might explain its inhibitory effect on acid production.IMPORTANCEDental caries is a common chronic detrimental disease, which could cause a series of oral problem including oral pain, difficulties in eating, and so on. Recently, many natural products have been considered as fundamental sources of therapeutic drugs to prevent caries. Berberine as a plant extract showed good antibiofilm abilities against microorganism. Our study focuses on its antibiofilm abilities against S. mutans, which was defined as major cariogenic bacterium and explored the role of pH values and possible underlying mechanisms in the inhibitory effect of BH on S. mutans biofilm formation. This study demonstrated a promising prospect for BH as an adjuvant drug in the prevention and management of dental caries.
Collapse
Affiliation(s)
- Yang Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoying Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Huancai Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
22
|
Woo S, Marquez L, Crandall WJ, Risener CJ, Quave CL. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: insights from 2018-2022. Nat Prod Rep 2023; 40:1271-1290. [PMID: 37439502 PMCID: PMC10472255 DOI: 10.1039/d2np00090c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Covering: 2018 to 2022Antimicrobial resistance (AMR) poses a significant global health threat. There is a rising demand for innovative drug scaffolds and new targets to combat multidrug-resistant bacteria. Before the advent of antibiotics, infections were treated with plants chosen from traditional medicine practices. Of Earth's 374 000 plant species, approximately 9% have been used medicinally, but most species remain to be investigated. This review illuminates discoveries of antimicrobial natural products from plants covering 2018 to 2022. It highlights plant-derived natural products with antibacterial, antivirulence, and antibiofilm activity documented in lab studies. Additionally, this review examines the development of novel derivatives from well-studied parent natural products, as natural product derivatives have often served as scaffolds for anti-infective agents.
Collapse
Affiliation(s)
- Sunmin Woo
- Center for the Study of Human Health, Emory University, USA
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - William J Crandall
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Caitlin J Risener
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, USA
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, USA
- Department of Dermatology, Emory University School of Medicine, USA.
| |
Collapse
|
23
|
Exploration of the Main Antibiofilm Substance of Lactobacillus plantarum ATCC 14917 and Its Effect against Streptococcus mutans. Int J Mol Sci 2023; 24:ijms24031986. [PMID: 36768304 PMCID: PMC9916977 DOI: 10.3390/ijms24031986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Dental plaque, a complex biofilm system established by cariogenic bacteria such as Streptococcus mutans (S. mutans), is the initiator of dental caries. Studies have found that the cell-free supernatant (CFS) of Lactobacilli could inhibit S. mutans biofilm formation. However, the main antibiofilm substance of the Lactobacilli CFS that acts against S. mutans is unclear. The present study found that the CFS of Lactobacillus plantarum (L. plantarum) ATCC 14917 had the strongest antibiofilm effect among the five tested oral Lactobacilli. Further bioassay-guided isolation was performed to identify the main antibiofilm substance. The antibiofilm effect of the end product, named 1-1-4-3, was observed and the structure of it was elucidated by using Q-TOF MS, 2D NMR and HPLC. The results showed that several components in the CFS had an antibiofilm effect; however, the effect of 1-1-4-3 was the strongest, as it could reduce the generation of exopolysaccharides and make the biofilm looser and thinner. After structure elucidation and validation, 1-1-4-3 was identified as a mixture of lactic acid (LA) and valine. Additionally, LA was shown to be the main antibiofilm substance in 1-1-4-3. In summary, this study found that the antibiofilm effect of the L. plantarum CFS against S. mutans was attributable to the comprehensive effect of multiple components, among which LA played a dominant role.
Collapse
|
24
|
In Vitro Antibacterial and Anti-Inflammatory Activity of Arctostaphylos uva-ursi Leaf Extract against Cutibacterium acnes. Pharmaceutics 2022; 14:pharmaceutics14091952. [PMID: 36145700 PMCID: PMC9501556 DOI: 10.3390/pharmaceutics14091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cutibacterium acnes (C. acnes) is the main causative agent of acne vulgaris. The study aims to evaluate the antimicrobial activity of a natural product, Arctostaphylos uva-ursi leaf extract, against C. acnes. Preliminary chemical–physical characterization of the extract was carried out by means of FT-IR, TGA and XPS analyses. Skin permeation kinetics of the extract conveyed by a toning lotion was studied in vitro by Franz diffusion cell, monitoring the permeated arbutin (as the target component of the extract) and the total phenols by HPLC and UV-visible spectrophotometry, respectively. Antimicrobial activity and time-killing assays were performed to evaluate the effects of Arctostaphylos uva-ursi leaf extract against planktonic C. acnes. The influence of different Arctostaphylos uva-ursi leaf extract concentrations on the biofilm biomass inhibition and degradation was evaluated by the crystal violet (CV) method. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test was used to determine the viability of immortalized human keratinocytes (HaCaT) after exposure to Arctostaphylos uva-ursi leaf extract for 24 and 48 h. Levels of interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor (TNF)-α were quantified after HaCaT cells cotreatment with Arctostaphylos uva-ursi leaf extract and heat-killed C. acnes. The minimum inhibitory concentration (MIC) which exerted a bacteriostatic action on 90% of planktonic C. acnes (MIC90) was 0.6 mg/mL. Furthermore, MIC and sub-MIC concentrations influenced the biofilm formation phases, recording a percentage of inhibition that exceeded 50 and 40% at 0.6 and 0.3 mg/mL. Arctostaphylos uva-ursi leaf extract disrupted biofilm biomass of 57 and 45% at the same concentrations mentioned above. Active Arctostaphylos uva-ursi leaf extract doses did not affect the viability of HaCaT cells. On the other hand, at 1.25 and 0.6 mg/mL, complete inhibition of the secretion of pro-inflammatory cytokines was recorded. Taken together, these results indicate that Arctostaphylos uva-ursi leaf extract could represent a natural product to counter the virulence of C. acnes, representing a new alternative therapeutic option for the treatment of acne vulgaris.
Collapse
|
25
|
Caggiano M, Gasparro R, D’Ambrosio F, Pisano M, Di Palo MP, Contaldo M. Smoking Cessation on Periodontal and Peri-Implant Health Status: A Systematic Review. Dent J (Basel) 2022; 10:162. [PMID: 36135157 PMCID: PMC9497918 DOI: 10.3390/dj10090162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 12/22/2022] Open
Abstract
Since smoking is considered among the main risk factors for the onset and progression of periodontitis and peri-implantitis, the present systematic review aimed to evaluate the effect of smoking cessation on clinical, radiographic, and gingival crevicular periodontal parameters around natural teeth and dental implants in ex-smokers compared to current and non-smokers. The study protocol was developed based on the PRISMA guidelines, the research question was formulated according to the PICO model, and the literature search was conducted through PubMed/MEDLINE, Cochrane library, and BioMed Central databases. From the 916 title/abstracts initially identified, seven articles were included in the present systematic review and assessed for quality through the ROBINS-I tool. Reported findings on clinical and crevicular periodontal parameters around natural teeth were contrasting when comparing ex-smokers to current and non-smokers; thus, individualized recommendations for previous smoker periodontal patients are currently lacking. No data on radiographic parameters were retrieved. Similarly, data on periodontal parameters around dental implants were not available, highlighting the need for focused investigations assessing the role of both smoking habit and cessation on peri-implant health status and responsiveness to treatment.
Collapse
Affiliation(s)
- Mario Caggiano
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Roberta Gasparro
- Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Massimo Pisano
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Maria Pia Di Palo
- Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialities, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|