1
|
Gawande PS, Manigandan V, Ganesh R S, Kannan VR, Ramu K, Murthy MVR. Metagenomic analysis of pathogenic bacteria and virulence factor genes in coastal sediments from highly urbanized cities of India. Microb Pathog 2024; 196:106984. [PMID: 39341578 DOI: 10.1016/j.micpath.2024.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
A metagenomic approach was employed to investigate the diversity and distribution of Virulence Factors Genes (VFGs) and Pathogenic Bacteria (PB) in sediment samples collected from highly urbanized cities along the Indian coastline. Among the study locations, Mumbai, Veraval and Paradeep showed a higher abundance of PB, with Vibrio and Pseudomonas as dominant at the genus level, and Escherichia coli and Pseudomonas aeruginosa at the species level. In total, 295 VFGs were detected across all sediment samples, of which 40 VFGs showed a similarity of ≥90 % with the Virulence Database (VFDB) and were focused in this study. Among the virulent proteins, twitching motility protein and flagellar P-ring were found to be prevalent and significantly associated with Vibrio spp., and Pseudomonas spp., indicating potential bacterial pathogenicity. This investigation serves as the basis for future studies and provides insights into the comprehensive taxonomic profiles of PB, VFGs and their associated PB in the coastal sediments of India.
Collapse
Affiliation(s)
- Pradip Sahebrao Gawande
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India; Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Vajravelu Manigandan
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| | - Sankar Ganesh R
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| | - V Rajesh Kannan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - K Ramu
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India.
| | - M V Ramana Murthy
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Rosado D, Fárez-Román V, Müller F, Nambi I, Fohrer N. Rethinking Urban Water Management Through Drivers-Pressures-States-Impacts-Responses Framework Application in Chennai, India. ENVIRONMENTAL MANAGEMENT 2024; 74:970-988. [PMID: 39107613 PMCID: PMC11438619 DOI: 10.1007/s00267-024-02022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/19/2024] [Indexed: 09/30/2024]
Abstract
Cities suffering water scarcity are projected to increase in the following decades. However, the application of standardized indicator frameworks for assessing urban water resource management problems is on an early stage. India is expected to have the highest urban population facing water scarcity in the world by 2050. In this study, the authors assess how the Drivers-Pressures-States-Impacts-Responses framework, a causal framework adopted by the European Environment Agency, can contribute to evaluate water management challenges in cities and apply it to Chennai, India´s fourth-largest urban agglomeration. The framework proved to be a helpful tool for the evaluation of water management challenges in cities by disentangling relationships between environmental indicators and structuring dispersed data that allows a better understanding for policymakers. The main drivers identified in Chennai were population growth and economic development which generated impacts such as loss of aquatic ecosystems, low water table, low water quality, and reduction of biodiversity and human health. As a response, better urban planning, projects for new water infrastructure, and water bodies restoration have been implemented. Nevertheless, Chennai keeps facing difficulties to achieve proper water management. The severe hit of the COVID-19 pandemic on the Indian economy and its future management will be key for achievements related to water management.
Collapse
Affiliation(s)
- Daniel Rosado
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany.
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Indo-German Centre for Sustainability, Indian Institute of Technology Madras, Chennai, India.
| | - Valeria Fárez-Román
- Department Lake Research, UFZ - Helmholtz Centre for Environmental Research, Magdeburg, Germany
| | - Felix Müller
- Department of Ecosystem Management, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| | - Indumathi Nambi
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Nicola Fohrer
- Department of Hydrology and Water Resources Management, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| |
Collapse
|
3
|
Xiao R, Hu Y, Wang Y, Li J, Guo C, Bai J, Zhang L, Zhang K, Jorquera MA, Acuña JJ, Pan W. Pathogen profile of Baiyangdian Lake sediments using metagenomic analysis and their correlation with environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169628. [PMID: 38159771 DOI: 10.1016/j.scitotenv.2023.169628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Increasing concerns about public health and safety after covid-19 have raised pathogen studies, especially in aquatic environments. However, the extent to how different location and human activities affect geographic occurrence and distribution of pathogens in response to agricultural pollution, boat tourism disturbances and municipal wastewater inflow in a degraded lake remains unclear. Since the surrounding residents depend on the lake for their livelihood, understanding the pathogens reserved in lake sediment and the regulation possibility by environmental factors are challenges with far-reaching significance. Results showed that 187 pathogens were concurrently shared by the nine sediment samples, with Salmonella enterica and Pseudomonas aeruginosa being the most abundant. The similar composition of the pathogens suggests that lake sediment may act as reservoirs of generalist pathogens which may pose infection risk to a wide range of host species. Of the four virulence factors (VFs) types analyzed, offensive VFs were dominant (>46 % on average) in all samples, with dominant subtypes including adherence, secretion systems and toxins. Notably, the lake sediments under the impact of agricultural use (g1) showed significantly higher diversity and abundance of pathogen species and VFs than those under the impact of boat tourism (g2) and/or municipal wastewater inflow with reed marshes filtration (g3). From the co-occurrence networks, pathogens and pesticides, aggregate fractions, EC, pH, phosphatase have strong correlations. Strong positive correlations between pathogens and diazinon in g1 and ppDDT in g2 and g3 suggest higher pesticide-pathogen co-exposure risk. These findings highlight the need to explore pathogen - environmental factor interaction mechanisms in the human-impacted water environments where the control of pathogen invasion by environmental factors may accessible.
Collapse
Affiliation(s)
- Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Jacquelinne J Acuña
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
4
|
Parsa SM. Mega-scale desalination efficacy (Reverse Osmosis, Electrodialysis, Membrane Distillation, MED, MSF) during COVID-19: Evidence from salinity, pretreatment methods, temperature of operation. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2023; 9:100217. [PMID: 37521749 PMCID: PMC9744688 DOI: 10.1016/j.hazadv.2022.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
The unprecedented situation of the COVID-19 pandemic heavily polluted water bodies whereas the presence of SARS-CoV-2, even in treated wastewater in every corner of the world is reported. The main aim of the present study is to show the effectiveness and feasibility of some well-known desalination technologies which are reverse osmosis (RO), Electrodialysis (ED), Membrane Distillation (MD), multi effect distillation (MED), and multi stage flashing (MSF) during the COVID-19 pandemic. Systems' effectiveness against the novel coronavirus based on three parameters of nasopharynx/nasal saline-irrigation, temperature of operation and pretreatment methods are evaluated. First, based on previous clinical studies, it showed that using saline solution (hypertonic saline >0.9% concentration) for gargling/irrigating of nasal/nasopharynx/throat results in reducing and replication of the viral in patients, subsequently the feed water of desalination plants which has concentration higher than 3.5% (35000ppm) is preventive against the SARS-CoV-2 virus. Second, the temperature operation of thermally-driven desalination; MSF and MED (70-120°C) and MD (55-85°C) is high enough to inhibit the contamination of plant structure and viral survival in feed water. The third factor is utilizing various pretreatment process such as chlorination, filtration, thermal/precipitation softening, ultrafiltration (mostly for RO, but also for MD, MED and MSF), which are powerful treatment methods against biologically-contaminated feed water particularly the SARS-CoV-2. Eventually, it can be concluded that large-scale desalination plants during COVID-19 and similar situation are completely reliable for providing safe drinking water.
Collapse
Affiliation(s)
- Seyed Masoud Parsa
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Saravanan K, Kiruba-Sankar R, Khan MJ, Hashmi AS, Velmurugan A, Haridas H, Prakasan S, Deepitha RP, Laxmi MNV. Baseline assessment of marine debris with soil, sediment, and water quality characteristics from the fish landing centres of South Andaman, Andaman archipelago, India. MARINE POLLUTION BULLETIN 2021; 172:112879. [PMID: 34464820 DOI: 10.1016/j.marpolbul.2021.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The present study investigates the issue of marine debris and the associated soil, sediment, water quality, and microbial load from the fish landing centres (Junglighat, Chatham, Wandoor, and Guptapara) of South Andaman. The results revealed that significantly (P < 0.05) higher number and weight of marine debris was found in urban landing centres such as Chatham (21.26 ± 1.03 numbers/m2) and Junglighat (268.16 ± 27.00 g/m2), respectively. Plastic debris was found to be the most abundant type of debris, among which plastic bags were dominant. Better soil, sediment, and water quality parameters were observed in rural landing centres such as Wandoor and Guptapara, whereas microbial load was found to be higher in urban landing centres. The study recommends the imperative need to generate awareness on better management practices among the stakeholders to deal with the issue of marine debris and to aim sustainable management of the coastal environment.
Collapse
Affiliation(s)
- K Saravanan
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - R Kiruba-Sankar
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India.
| | - Md Junaid Khan
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - Aqsa Siraj Hashmi
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - A Velmurugan
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - Harsha Haridas
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India; ICAR-Central Institute of Fisheries Education, Powarkheda Research Centre, Hoshangabad 461110, Madhya Pradesh, India
| | - Sreepriya Prakasan
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - R P Deepitha
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - M Naga Venkat Laxmi
- ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| |
Collapse
|
6
|
Boufafa M, Kadri S, Redder P, Bensouilah M. Occurrence and distribution of fecal indicators and pathogenic bacteria in seawater and Perna perna mussel in the Gulf of Annaba (Southern Mediterranean). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46035-46052. [PMID: 33884549 DOI: 10.1007/s11356-021-13978-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The identification of fecal contamination in coastal marine ecosystems is one of the main requirements for evaluation of potential risks to human health. The objective of this study was to investigate the occurrence and distribution of fecal indicators and pathogenic bacteria in seawaters and mussels collected monthly during a period of 1 year from four different sites in Northeastern Algeria (sites S1 to S4), through biochemical and molecular analyses. Our research is the first to use molecular analysis to unambiguously identify the potentially pathogenic bacteria present in Algerian Perna perna mussels. The obtained results revealed that the levels of fecal indicator bacteria (FIB) from both P. perna and seawater samples largely exceeded the permissible limits at S2 and S3. This is mainly related to their location close to industrial and coastal activity zones, which contain a mixture of urban, agricultural, and industrial pollutants. Besides, P. perna collected from all sites were severalfold more contaminated by FIB than seawater samples, primarily during the warm season of the study period. Biochemical and molecular analyses showed that isolated bacteria from both seawater and mussels were mainly potentially pathogenic species such as E. coli, Salmonella spp., Staphylococcus spp., Klebsiella spp., Pseudomonas spp., and Proteus spp.
Collapse
Affiliation(s)
- Mouna Boufafa
- Laboratory of Eco-biology for Marine Environment and Coastlines, Faculty of Science, Badji Moukhtar University, BP 12, 23000, Annaba, Algeria.
| | - Skander Kadri
- Laboratory of Eco-biology for Marine Environment and Coastlines, Faculty of Science, Badji Moukhtar University, BP 12, 23000, Annaba, Algeria
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Mourad Bensouilah
- Laboratory of Eco-biology for Marine Environment and Coastlines, Faculty of Science, Badji Moukhtar University, BP 12, 23000, Annaba, Algeria
| |
Collapse
|
7
|
Begum M, Kumar CS, Naik S, Pradhan U, Panda US, Mishra P. Indian coastal waters: a concoction of sewage indicator bacteria! An assessment on recreational beaches. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:455. [PMID: 34212216 DOI: 10.1007/s10661-021-09244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Coastal water quality assessment is important to maintain a healthy environment for various uses including fisheries and recreation. Microbial populations are used as biological indicators of contamination to monitor water quality and are considered by the government to be one of the critical features for issuing safety guidelines. Different bacterial groups (pathogenic, vibrio and faecal) from five major recreational beaches of Chennai, India, were monitored for the assessment of coastal water quality. Faecal coliforms (FC) were high at all the beaches, with up to 4.2 × 105 CFU/mL and exceeding the normal standard limits of 100 CFU/100 mL set by the Central Pollution Control Board (CPCB) of India. Rainfall was found to have a role in the variability and distribution of indicator and pathogenic bacteria. The seasonal dry period witnessed elevated FC, while dilution in the wet period reduced Escherichia coli-like organisms (ECLO). High microbial counts were detected near the beach situated close to the river mouth, mainly due to discharges of untreated domestic sewage and industrial wastes. Similarly, the biological oxygen demand (BOD) was also high, 0.32 to 10.32 mg/L. Dissolved inorganic nitrogen (DIN) ranged from 2.21 to 134.53 μmol/L and inorganic phosphate (IP) ranged from 0 to 57.53 μmol/L. These values indicated the presence of significant untreated sewage in the coastal water. This study revealed that Chennai coastal waters carry high levels of faecal and pathogenic bacteria, detrimental for recreational and other contact activities. The quantitative and qualitative analyses will be useful for modelling and prediction of coastal water quality and management of other recreational beaches in India.
Collapse
Affiliation(s)
- Mehmuna Begum
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India
| | - C Saravana Kumar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Government of India, Anna University Campus, Guindy, Chennai, 600 025, India
| | - Subrat Naik
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India
| | - Umakanta Pradhan
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India
| | - Uma Sankar Panda
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India
| | - Pravakar Mishra
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, NIOT Campus, Pallikaranai, Chennai, 600 100, Tamil Nadu, India.
| |
Collapse
|
8
|
Bhardwaj R, Gupta A, Garg JK. Impact of heavy metals on inhibitory concentration of Escherichia coli-a case study of river Yamuna system, Delhi, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:674. [PMID: 30361786 DOI: 10.1007/s10661-018-7061-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
The occurrence of resistant bacteria to specific heavy metals can be associated with increasing load of the metals in the environment. River Yamuna is polluted by various toxic heavy metals discharged by several industrial and agricultural sources. Therefore, the use of heavy metal-resistant bacteria as an indicator of metal pollution was tested in the present study. For the purpose of the study, the heavy metal resistance status of 42 Escherichia coli strains isolated from River Yamuna water from 7 sampling sites within a span of 2 years was determined using growth curves and plate dilution method in terms of minimum inhibitory concentration (MIC) values by comparing with MIC value of control strain. Seasonally, the lowest mean MIC value was observed for bacterial strains isolated in post-monsoon (December) 2013 and highest mean MIC value was observed for bacterial strains isolated in monsoon (August) 2015. Site-wise analysis of the maximum mean MIC values for all the isolated strains showed the highest mean Ni MIC value for the bacterial strains isolated from site S4 (ITO), highest mean Cu MIC, Cr MIC, and Fe MIC values for the bacterial strains isolated from site S2 (Najafgarh drain intermixing zone) and highest mean Cd MIC, Pb MIC, and Zn MIC values for the bacterial strains isolated from site S7 (Shahdara drain intermixing zone). Correlation analysis between mean MIC site-wise results with mean heavy metal site-wise concentrations showed significant positive correlation indicating that the higher the mean concentration of a given heavy metal at a given site, the higher the mean MIC value for the strains isolated from the same site indicating higher level of resistance. Overall, the present study has shown that the presence of heavy metals in River Yamuna caused due to indiscriminate discharge of various effluents from different kind of sources as well as due to insufficient treatment capacity of sewage treatment plants as well as common effluent treatment plants, has serious impacts on its bacterial microflora as it leads to the development of resistant strains.
Collapse
Affiliation(s)
- Richa Bhardwaj
- University School of Environment Management, Guru Gobind Singh Indraprsatha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprsatha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - J K Garg
- University School of Environment Management, Guru Gobind Singh Indraprsatha University, Sector 16-C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
9
|
An exploration of microbial and associated functional diversity in the OMZ and non-OMZ areas in the Bay of Bengal. J Biosci 2018. [DOI: 10.1007/s12038-018-9781-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Xie Y, Qiu N, Wang G. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection. MARINE POLLUTION BULLETIN 2017; 118:5-16. [PMID: 28215556 DOI: 10.1016/j.marpolbul.2017.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens.
Collapse
Affiliation(s)
- Yunxuan Xie
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Ning Qiu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Guangyi Wang
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
11
|
Vignesh S, Dahms HU, Muthukumar K, Vignesh G, James RA. Biomonitoring along the Tropical Southern Indian Coast with Multiple Biomarkers. PLoS One 2016; 11:e0154105. [PMID: 27941969 PMCID: PMC5152820 DOI: 10.1371/journal.pone.0154105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/09/2016] [Indexed: 12/04/2022] Open
Abstract
We assessed the spatial and temporal variations of pollution indicators and geochemical and trace metal parameters (23 in total) from water and sediment (144 samples) of three different eco-niches (beach, fishing harbor, and estuary) in larger coastal cities of southern India (Cuddalore and Pondicherry) for one year. A total of 120 marine Pseudomonas isolates were challenged against different concentrations of copper solutions and 10 different antibiotics in heavy metal and antibiotic resistance approaches, respectively. The study shows that 4.16% of the isolates could survive in 250 mM of copper; 70% were resistant to minimum concentrations. Strains were resistant (98.4%) to at least one antibiotic in Cuddalore compared to the Pondicherry (78.4%) region. Pollution index (PI) (0-14.55) and antibiotic resistance index (ARI) (0.05-0.10) ratio indicated that high bacterial and antibiotic loads were released into the coastal environment. The degree of trace metal contamination in sediments were calculated by enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geo-accumulation index (Igeo). Statistical parameters like two-way analysis of variance (ANOVA), correlation, factor analysis and scatter matrix tools were employed between the 23 parameters in order to find sources, pathways, disparities and interactions of environmental pollutants. It indicates that geochemical and biological parameters were not strongly associated with each other (except a few) and were affected by different sources. Factor analysis elucidated, 'microbe-metal' interaction (Factor 1-48.86%), 'anthropogenic' factor (Factor 2-13.23%) and 'Pseudomonas-Cadmium' factor (Factor 3-11.74%), respectively.
Collapse
Affiliation(s)
- Sivanandham Vignesh
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Hans-Uwe Dahms
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, Taiwan, R.O.C.; NSYSU
| | - Krishnan Muthukumar
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Gopalaswamy Vignesh
- Department of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung, Taiwan, R.O.C.; NSYSU
| |
Collapse
|
12
|
Narracci M, Acquaviva MI, Cavallo RA. Mar Piccolo of Taranto: Vibrio biodiversity in ecotoxicology approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2378-2385. [PMID: 24072640 DOI: 10.1007/s11356-013-2049-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Microorganisms play an indispensable role in the ecological functioning of marine environment. Some species are sensitive while others are insensitive for a specific pollutant. The aim of this work is a preliminary study of the quantitative and qualitative distribution of cultivable vibrios in sediments and water samples characterized by different toxicity levels. For 1 year, in three suitably selected sampling stations of Mar Piccolo in Taranto (Ionian Sea, Italy), we have evaluated the toxicity level by Microtox® system, vibrios, total, and fecal coliform densities. The results of the Microtox® tests showed sediments characterized by an elevated level of toxicity, while the interstitial water of the same sites always showed biostimulatory phenomenon. The quantitative results show that vibrios and coliforms are more abundant in water than in sediment samples. The most often isolated strains were: Vibrio alginolyticus, Vibrio mediterranei, Vibrio metschinkovii, and Vibrio splendidus II. This work is the first example of study on the distribution of Vibrio species related to toxicity evaluation conducted by the Microtox® bioassay. The results show the different distribution of Vibrionaceae in two environmental matrices analyzed and characterized by different levels of toxicity.
Collapse
Affiliation(s)
- M Narracci
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy
| | - M I Acquaviva
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy.
| | - R A Cavallo
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy
| |
Collapse
|