1
|
Ribeiro M, Galli E, Guérin T, Silva JAL, Castanheira I, Leufroy A, Jitaru P. Simultaneous speciation analysis of Hg and Se in fish by high-performance liquid chromatography and inductively coupled plasma-mass spectrometry following microwave-assisted enzymatic hydrolysis. Anal Bioanal Chem 2023; 415:7175-7186. [PMID: 37819434 DOI: 10.1007/s00216-023-04984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
This study reports the development and validation of a new analytical method for simultaneous speciation analysis of Se and Hg in fish muscle. For this purpose, four Se species (selenite/Se(IV), selenate/Se(VI), selenomethionine/SeMet, and selenocysteine/SeCys) and two Hg species (inorganic mercury/iHg and methylmercury/MeHg) were extracted simultaneously by microwave-assisted enzymatic hydrolysis and then separated by HPLC in less than 15 min by using a column with both anion and cation exchange mechanisms and a mobile phase consisting of a mixture of methanol 5% (v/v), 45 mM HNO3, 0.015% 2-mercaptoethanol, and 1.5 mM sodium 3-mercapto-1-propanesulfonate. The separated species of Hg and Se were detected online by inductively coupled plasma-mass spectrometry (ICP-MS). The speciation analysis method was validated by means of the accuracy profile approach by carrying out three series of measurements in duplicate on three different days over a time-span of 3 weeks. The limits of quantification (LOQ) are in the range of 0.010-0.013 mg/kg wet weight (ww) for all selenium species, except for Se(IV) (0.15 mg/kg ww), while the coefficient of variation in terms of intermediate reproducibility (CVR) was < 7%. The LOQ for MeHg was 0.006 mg/kg ww, while the CVR was 3%. The method was successfully applied to the analysis of muscle samples from four different fish species: rainbow trout, tuna, swordfish, and dogfish.
Collapse
Affiliation(s)
- M Ribeiro
- Laboratory for Food Safety, ANSES, Univ Paris Est Creteil, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
- Departamento de Alimentação E Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, INSA IP, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - E Galli
- Laboratory for Food Safety, ANSES, Univ Paris Est Creteil, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
| | - T Guérin
- Strategy and Programmes Department, ANSES, 94701, Maisons-Alfort, France
| | - J A L Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - I Castanheira
- Departamento de Alimentação E Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, INSA IP, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
| | - A Leufroy
- Laboratory for Food Safety, ANSES, Univ Paris Est Creteil, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France
| | - P Jitaru
- Laboratory for Food Safety, ANSES, Univ Paris Est Creteil, 14 Rue Pierre Et Marie Curie, 94700, Maisons-Alfort, France.
| |
Collapse
|
2
|
TEMEL NKARTAL, ÇÖPÜR M. Determination of Trace Cobalt (II) in Spices Samples by Ultrasonic Assisted Cloud Point Extraction with Spectrophotometry. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Subirana MA, Boada R, Xiao T, Llugany M, Valiente M. Direct and indirect selenium speciation in biofortified wheat: A tale of two techniques. PHYSIOLOGIA PLANTARUM 2023; 175:e13843. [PMID: 36538026 PMCID: PMC10107779 DOI: 10.1111/ppl.13843] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Wheat can be biofortified with different inorganic selenium (Se) forms, selenite or selenate. The choice of Se source influences the physiological response of the plant and the Se metabolites produced. We looked at selenium uptake, distribution and metabolization in wheat exposed to selenite, selenate and a 1:1 molar mixture of both to determine the impact of each treatment on the Se speciation in roots, shoots, and grains. To achieve a comprehensive quantification of the Se species, the complementarity of high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy was exploited. This approach allowed the identification of the six main selenium species: selenomethionine, selenocysteine, selenocystine, selenite, selenate, and elemental selenium. The three treatments resulted in similar total selenium concentration in grains, 90-150 mg Se kg-1 , but produced different effects in the plant. Selenite enhanced root accumulation (66% of selenium) and induced the maximum toxicity, whereas selenate favored shoot translocation (46%). With the 1:1 mixture, selenium was distributed along the plant generating lower toxicity. Although all conditions resulted in >92% of organic selenium in the grain, selenate produced mainly C-Se-C forms, such as selenomethionine, while selenite (alone or in the mixture) enhanced the production of C-Se-Se-C forms, such as selenocystine, modifying the selenoamino acid composition. These results provide a better understanding of the metabolization of selenium species which is key to minimize plant toxicity and any concomitant effect that may arise due to Se-biofortification.
Collapse
Affiliation(s)
- Maria Angels Subirana
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Roberto Boada
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Tingting Xiao
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Mercè Llugany
- Plant Physiology Group (BABVE), Facultat de BiociènciesUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Manuel Valiente
- GTS‐UAB Research Group, Department of Chemistry, Faculty of ScienceUniversitat Autònoma de BarcelonaBellaterraSpain
| |
Collapse
|
4
|
Ge F, Gao L, Peng X, Li Q, Zhu Y, Yu J, Wang Z. Atmospheric pressure glow discharge optical emission spectrometry coupled with laser ablation for direct solid quantitative determination of Zn, Pb, and Cd in soils. Talanta 2020; 218:121119. [PMID: 32797877 DOI: 10.1016/j.talanta.2020.121119] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/16/2022]
Abstract
A device utilizing atmospheric pressure glow discharge as the second excitation source coupled with laser ablation (LA) for direct solid sampling was developed, with few operating costs and low gas consumption. This new device was first utilized for the highly sensitive determination of Zn, Pb, and Cd elements in complex matrix soil samples. It also provided a new method for monitoring these three trace elements in soil samples. Good linearity was observed in the quantitative results for Zn, Pb, and Cd detection, and the respective linear correlation coefficients (R2) were 0.9953, 0.9897, and 0.9961. Moreover, the limit of detection (LOD) of 0.68, 2.71, and 0.31 mg kg-1 were achieved for Zn, Pb, and Cd, respectively; the LOD of Zn reduced by more than one order of magnitude compared to that observed in laser-induced breakdown spectroscopy results. In addition, the quantitative analysis results showed good agreement with the certified values and those obtained of ICP optical emission spectrometry, proving the detection accuracy and practicability of the developed device.
Collapse
Affiliation(s)
- Fen Ge
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Liang Gao
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiaoxu Peng
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yufang Zhu
- School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
| | - Jin Yu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. New adsorbents based on imprinted polymers and composite nanomaterials for arsenic and mercury screening/speciation: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104886] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
6
|
Pyrzynska K, Sentkowska A. Selenium in plant foods: speciation analysis, bioavailability, and factors affecting composition. Crit Rev Food Sci Nutr 2020; 61:1340-1352. [PMID: 32363893 DOI: 10.1080/10408398.2020.1758027] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interest in selenium has been increasing over the past few decades with growing knowledge of its importance to overall health. The ability of several plants to accumulate and transform inorganic selenium forms into its bioactive organic compounds has important implications for human nutrition and health. In this review, we present the studies carried out during the last decade to characterize selenium species produced by different plant foods. Attention is also paid to the effect of selenium treatment on chemical composition and antioxidant properties of plants.
Collapse
|
7
|
Pyrzynska K, Sentkowska A. Liquid chromatographic analysis of selenium species in plant materials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Chen CT, Liao YY, Salunke SB, Lin YH, Kuo TS. Directed Self-Assembly of C 4-Symmetric, Oxidovanadate-Centered, Vanadyl(V) Quadruplexes for Ba 2+- and Hg 2+-Specific Recognition, Transport, and Recovery. Inorg Chem 2018; 57:11511-11523. [PMID: 30183263 DOI: 10.1021/acs.inorgchem.8b01454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directed assembly of loosely, Na+-bound, oxidovanadate-centered quartets of C4-symmetry from tailor-made chiral N-salicylidene-vanadyl(V) complexes, for the first time, allows for highly efficient Ba2+- or Hg2+-specific detection (by 51V NMR and VCD), transport (forming a unique helical capsule or a capped square planar complex, respectively), and green recovery from an aqueous phase containing 4 different alkaline earth ions or from at least 10 different metal ions of similar size and charge capacity into the CHCl3 layer without interference from oxa- or oxophilic ions like Mg2+, Ca2+, Cu2+, Cd2+, and Pb2+.
Collapse
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan
| | - Yi-Ya Liao
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan
| | | | - Ya-Hui Lin
- National Taiwan Normal University , Taipei , Taiwan
| | | |
Collapse
|
9
|
Cubadda F, Jackson BP, Cottingham KL, Van Horne YO, Kurzius-Spencer M. Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1228-1239. [PMID: 27914647 PMCID: PMC5207036 DOI: 10.1016/j.scitotenv.2016.11.108] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 04/15/2023]
Abstract
Inorganic arsenic (iAs) is ubiquitous in the environment as arsenite (AsIII) and arsenate (AsV) compounds and biotransformation of these toxic chemicals leads to the extraordinary variety of organoarsenic species found in nature. Despite classification as a human carcinogen based on data from populations exposed through contaminated drinking water, only recently has a need for regulatory limits on iAs in food been recognized. The delay was due to the difficulty in risk assessment of dietary iAs, which critically relies on speciation analysis providing occurrence data for iAs in food - and not simply for total arsenic. In the present review the state of knowledge regarding arsenic speciation in food and diet is evaluated with focus on iAs and human exposure assessment through different dietary approaches including duplicate diet studies, market basket surveys, and total diet studies. The analytical requirements for obtaining reliable data for iAs in food are discussed and iAs levels in foods and beverages are summarized, along with information on other (potentially) toxic co-occurring organoarsenic compounds. Quantitative exposure assessment of iAs in food is addressed, focusing on the need of capturing variability and extent of exposure and identifying what dietary items drive very high exposure for certain population groups. Finally, gaps and uncertainties are discussed, including effect of processing and cooking, and iAs bioavailability.
Collapse
Affiliation(s)
- Francesco Cubadda
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità-Italian National Institute of Health, Rome, Italy.
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | | | | | | |
Collapse
|
10
|
Llorente-Mirandes T, Rubio R, López-Sánchez JF. Inorganic Arsenic Determination in Food: A Review of Analytical Proposals and Quality Assessment Over the Last Six Years. APPLIED SPECTROSCOPY 2017; 71:25-69. [PMID: 28033722 DOI: 10.1177/0003702816652374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we review recent developments in analytical proposals for the assessment of inorganic arsenic (iAs) content in food products. Interest in the determination of iAs in products for human consumption such as food commodities, wine, and seaweed among others is fueled by the wide recognition of its toxic effects on humans, even at low concentrations. Currently, the need for robust and reliable analytical methods is recognized by various international safety and health agencies, and by organizations in charge of establishing acceptable tolerance levels of iAs in food. This review summarizes the state of the art of analytical methods while highlighting tools for the assessment of quality assessment of the results, such as the production and evaluation of certified reference materials (CRMs) and the availability of specific proficiency testing (PT) programmes. Because the number of studies dedicated to the subject of this review has increased considerably over recent years, the sources consulted and cited here are limited to those from 2010 to the end of 2015.
Collapse
Affiliation(s)
| | - Roser Rubio
- Department of Analytical Chemistry, University of Barcelona, Spain
| | | |
Collapse
|
11
|
Chávez-Capilla T, Maher W, Kelly T, Foster S. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients. J Environ Sci (China) 2016; 49:222-232. [PMID: 29216971 DOI: 10.1016/j.jes.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 06/07/2023]
Abstract
Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species.
Collapse
Affiliation(s)
- Teresa Chávez-Capilla
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| | - William Maher
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Tamsin Kelly
- National Centre for Forensic Studies, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, ACT 2601, Australia
| | - Simon Foster
- Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| |
Collapse
|
12
|
Fiamegkos I, Cordeiro F, Robouch P, Vélez D, Devesa V, Raber G, Sloth JJ, Rasmussen RR, Llorente-Mirandes T, Lopez-Sanchez JF, Rubio R, Cubadda F, D'Amato M, Feldmann J, Raab A, Emteborg H, de la Calle MB. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41. Food Chem 2016; 213:169-179. [PMID: 27451169 DOI: 10.1016/j.foodchem.2016.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/22/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
Abstract
A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55mgkg(-1). The relative standard deviation for repeatability (RSDr) ranged from 4.1 to 10.3%, while the relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 22.8%.
Collapse
Affiliation(s)
- I Fiamegkos
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, 111 Retieseweg, 2440 Geel, Belgium
| | - F Cordeiro
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, 111 Retieseweg, 2440 Geel, Belgium
| | - P Robouch
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, 111 Retieseweg, 2440 Geel, Belgium
| | - D Vélez
- Metal Contamination Laboratory (IATA-CSIC), Avd. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - V Devesa
- Metal Contamination Laboratory (IATA-CSIC), Avd. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - G Raber
- Institute of Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - J J Sloth
- Technical University of Denmark, National Food Institute, Division of Food Chemistry, Mørkhøj Bygade 19, 2860 Søborg, Denmark
| | - R R Rasmussen
- Technical University of Denmark, National Food Institute, Division of Food Chemistry, Mørkhøj Bygade 19, 2860 Søborg, Denmark
| | - T Llorente-Mirandes
- Department of Analytical Chemistry, University of Barcelona, Martí I Franque's 1-11, 08028 Barcelona, Spain
| | - J F Lopez-Sanchez
- Department of Analytical Chemistry, University of Barcelona, Martí I Franque's 1-11, 08028 Barcelona, Spain
| | - R Rubio
- Department of Analytical Chemistry, University of Barcelona, Martí I Franque's 1-11, 08028 Barcelona, Spain
| | - F Cubadda
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità-Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - M D'Amato
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità-Italian National Health Institute, Viale Regina Elena 299, 00161 Rome, Italy
| | - J Feldmann
- Trace Element Speciation Laboratory (TESLA), University of Aberdeen, College of Physical Science, Chemistry, Meston Walk, Aberdeen AB24 3UE, Scotland, United Kingdom
| | - A Raab
- Trace Element Speciation Laboratory (TESLA), University of Aberdeen, College of Physical Science, Chemistry, Meston Walk, Aberdeen AB24 3UE, Scotland, United Kingdom
| | - H Emteborg
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, 111 Retieseweg, 2440 Geel, Belgium
| | - M B de la Calle
- European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, 111 Retieseweg, 2440 Geel, Belgium.
| |
Collapse
|
13
|
Application of ultrasonic-assisted cloud point extraction/flame atomic absorption spectrometry (UA-CPE/FAAS) for preconcentration and determination of low levels of antimony in some beverage samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0874-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
A New Ultrasound Assisted-Cloud Point Extraction Method for the Determination of Trace Levels of Tin and Antimony in Food and Beverages by Flame Atomic Absorption Spectrometry. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0487-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Ferreira SL, Lemos VA, Silva LO, Queiroz AF, Souza AS, da Silva EG, dos Santos WN, das Virgens CF. Analytical strategies of sample preparation for the determination of mercury in food matrices — A review. Microchem J 2015. [DOI: 10.1016/j.microc.2015.02.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Liu Q, Peng H, Lu X, Le XC. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat. Anal Chim Acta 2015; 888:1-9. [PMID: 26320952 DOI: 10.1016/j.aca.2015.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/28/2015] [Accepted: 05/03/2015] [Indexed: 01/15/2023]
Abstract
Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg(-1) to mg kg(-1). However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0-1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (As(V)), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean±standard deviation μg kg(-1)) AsB (107±4), As(III) (113±7), As(V) (7±2), MMA (51±5), DMA (64±6), Roxarsone (18±1), and four unidentified arsenic species (approximate concentration 1-10 μg kg(-1)).
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hanyong Peng
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiufen Lu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
17
|
Altunay N, Gürkan R. A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry. Food Chem 2015; 175:507-15. [DOI: 10.1016/j.foodchem.2014.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 11/30/2022]
|
18
|
Aborode FA, Raab A, Foster S, Lombi E, Maher W, Krupp EM, Feldmann J. Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium. Metallomics 2015; 7:1056-66. [DOI: 10.1039/c5mt00025d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
T. alata plants were exposed to 10 μM selenite to determine biotransformation of selenium in their roots using HPLC-ICPMS/ESIMS and EXAFS.
Collapse
Affiliation(s)
- Fatai Adigun Aborode
- TESLA (Trace Element Speciation Laboratory) Department of Chemistry
- Meston Walk
- University of Aberdeen
- Aberdeen AB24 3UE
- Scotland, UK
| | - Andrea Raab
- TESLA (Trace Element Speciation Laboratory) Department of Chemistry
- Meston Walk
- University of Aberdeen
- Aberdeen AB24 3UE
- Scotland, UK
| | - Simon Foster
- University of Canberra
- Ecochemistry Laboratory
- Institute for Applied Ecology
- , Australia
| | - Enzo Lombi
- Centre for Environmental Risk Assessment and Remediation
- University of South Australia
- Mawson Lakes, Australia
| | - William Maher
- University of Canberra
- Ecochemistry Laboratory
- Institute for Applied Ecology
- , Australia
| | - Eva M. Krupp
- TESLA (Trace Element Speciation Laboratory) Department of Chemistry
- Meston Walk
- University of Aberdeen
- Aberdeen AB24 3UE
- Scotland, UK
| | - Joerg Feldmann
- TESLA (Trace Element Speciation Laboratory) Department of Chemistry
- Meston Walk
- University of Aberdeen
- Aberdeen AB24 3UE
- Scotland, UK
| |
Collapse
|
19
|
Amaral CD, Nóbrega JA, Nogueira ARA. Investigation of arsenic species stability by HPLC-ICP-MS in plants stored under different conditions for 12months. Microchem J 2014. [DOI: 10.1016/j.microc.2014.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Ta C, Reith F, Brugger J, Pring A, Lenehan CE. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5737-5744. [PMID: 24779406 DOI: 10.1021/es404919a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.
Collapse
Affiliation(s)
- Christine Ta
- School of Chemical and Physical Sciences, Flinders University , Adelaide, South Australia Australia
| | | | | | | | | |
Collapse
|
21
|
Raposo JC, Navarro P, Felipe JIG, Etxeandia J, Carrero JA, Madariaga JM. Trace element determination in water samples by on-line isotope dilution and inductively coupled plasma with mass spectrometry detection. Microchem J 2014. [DOI: 10.1016/j.microc.2013.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Ferreira SL, dos Santos WN, dos Santos IF, Junior MM, Silva LO, Barbosa UA, de Santana FA, de S. Queiroz AF. Strategies of sample preparation for speciation analysis of inorganic antimony using hydride generation atomic spectrometry. Microchem J 2014. [DOI: 10.1016/j.microc.2013.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
García-Salgado S, Quijano MÁ. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:604-612. [PMID: 24513726 DOI: 10.1039/c3em00624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ten native terrestrial plants from soils polluted by former mining activities (Mónica mine, NW Madrid, Spain), with high total arsenic concentration levels (up to 3500 μg g(-1)), have been studied to determine the fraction of arsenic present as toxic forms (inorganic and methylated species), which present a higher mobility and therefore the potential risk associated with their reintegration into the environment is high. Roots and aboveground parts were analyzed separately to assess possible transformations from translocation processes. Extractions were carried out with deionized water by microwave-assisted extraction at a temperature of 90 °C and three extraction steps of 7.5 min each. Total extracted arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry, showing extraction percentages from 9 to 39% (calculated as the ratio between total extracted arsenic (Asext) and total arsenic (AsT) concentrations in plants). Speciation studies, performed by high performance liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry, showed the main presence of arsenate (As(v)) (up to 350 μg g(-1)), followed by arsenite (As(iii)), in both plant parts. Monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) were also found only in some plants. On the other hand, the use of 0.5 mol L(-1) acetic acid as an extractant led to higher extraction percentages (33-87%), but lower column recoveries, probably due to the extraction of arsenic compounds different to the toxic free ions studied, which may come from biotransformation mechanisms carried out by plants to reduce arsenic toxicity. However, As(v) concentrations increased up to 800 μg g(-1) in acid medium, indicating the probable release of As(v) from organoarsenic compounds and therefore a higher potential risk for the environment.
Collapse
Affiliation(s)
- Sara García-Salgado
- Departamento de Ingeniería Civil: Tecnología Hidráulica y Energética, Escuela Técnica Superior de Ingeniería Civil, Universidad Politécnica de Madrid, C/Alfonso XII, 3, 28014 Madrid, Spain.
| | | |
Collapse
|
24
|
Musil S, Pétursdóttir ÁH, Raab A, Gunnlaugsdóttir H, Krupp E, Feldmann J. Speciation without chromatography using selective hydride generation: inorganic arsenic in rice and samples of marine origin. Anal Chem 2014; 86:993-9. [PMID: 24354293 DOI: 10.1021/ac403438c] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Because of the toxicity of inorganic arsenic (iAs), only iAs needs to be monitored in food and feedstuff. This demands the development of easy and quick analytical methods to screen large number of samples. This work focuses on hydride generation (HG) coupled with an ICPMS as an arsenic detector where the HG is added as a selective step to determine iAs in the gaseous phase while organically bound As remains in the solution. iAs forms volatile arsine species with high efficiency when treated with NaBH4 at acidic conditions, whereas most other organoarsenic compounds do not form any or only less volatile arsines. Additionally, using high concentrations of HCl further reduces the production of the less volatile arsines and iAs is almost exclusively formed, therefore enabling to measure iAs without a prior step of species separation using chromatography. Here, we coupled a commercially available HG system to an ICPMS and optimized for determination of iAs in rice and samples of marine origin using different acid concentrations, wet and dry plasma conditions, and different reaction gas modes. Comparing this method to conventional HPLC-ICPMS, no statistical difference in iAs concentration was found and comparable limits of detections were achieved using less than half the instrument time.
Collapse
Affiliation(s)
- Stanislav Musil
- TESLA-Trace Element Speciation Laboratory, Department of Chemistry, University of Aberdeen , Aberdeen, AB24 3UE, Scotland, U.K
| | | | | | | | | | | |
Collapse
|
25
|
Ohki A, Hayashi K, Ohsako J, Nakajima T, Takanashi H. Analysis of mercury and selenium during subcritical water treatment of fish tissue by various atomic spectrometric methods. Microchem J 2013. [DOI: 10.1016/j.microc.2012.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|