1
|
Sanjuan-Navarro L, Boughbina-Portolés A, Moliner-Martínez Y, von der Kammer F, Campíns-Falcó P. Isolation of Carbon Black from Soils by Dispersion for Analysis: Quantitation and Characterization by Field Flow Fractionation Techniques. ACS OMEGA 2023; 8:34795-34804. [PMID: 37779961 PMCID: PMC10536020 DOI: 10.1021/acsomega.3c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023]
Abstract
In the present work, a procedure based on a dispersive medium for carbon black (CB) isolation from soil samples for analysis was proposed for the first time. Polymeric and biological dispersants and a sequential use of both dispersants were assayed. Asymmetrical flow field flow fractionation with dynamic light scattering detector (AF4-DLS) and sedimentation field flow fractionation with multi-angle light scattering detector (SdF3-MALS) were used for CB quantitation and characterization in the achieved dispersions. Soil samples contaminated with CB were processed, and CB isolation depended on the solid size distribution and composition and dispersant nature. More quantitative isolations were achieved for the four soils treated by the biological dispersant. As the organic matter percentage is higher in soil, the CB isolation was better, varying between 75 and 99% with standard deviation (s) ⩽ 2% for all soils. A soil contaminated with a CB-based pigment paste was analyzed, achieving (99 ± 2)% expressed as expanded uncertainty (K = 2) of dispersive isolation by the biological dispersant, and the sampling was scaled to 250 g of soil with positive results. The procedure was completed by CB recovery to obtain a solid residue able to be reused if necessary. For the filter-aided recovery step, different membranes (fiberglass, nylon, and Teflon) with a pore size between 0.1 and 5 μm were tested. The quantitation of the CB retained in the filter was measured by diffuse reflectance spectroscopy. Teflon (0.10 μm) provided better results for CB recovery, and its re-dispersion was also studied with suitable results. Determination of CB from the filters by diffuse reflectance spectrometry provided the same results than AF4 for CB dispersions.
Collapse
Affiliation(s)
- Lorenzo Sanjuan-Navarro
- MINTOTA
Research Group, Departament de Química Analítica, Facultat
de Química, Universitat de Valencia, 46100 Burjassot, Spain
| | - Aaron Boughbina-Portolés
- MINTOTA
Research Group, Departament de Química Analítica, Facultat
de Química, Universitat de Valencia, 46100 Burjassot, Spain
| | - Yolanda Moliner-Martínez
- MINTOTA
Research Group, Departament de Química Analítica, Facultat
de Química, Universitat de Valencia, 46100 Burjassot, Spain
| | - Frank von der Kammer
- Department
of Environmental Geosciences, University
of Vienna, 1090 Vienna, Austria
| | - Pilar Campíns-Falcó
- MINTOTA
Research Group, Departament de Química Analítica, Facultat
de Química, Universitat de Valencia, 46100 Burjassot, Spain
| |
Collapse
|
2
|
A Study on Aqueous Dispersing of Carbon Black Nanoparticles Surface-Coated with Styrene Maleic Acid (SMA) Copolymer. Polymers (Basel) 2022; 14:polym14245455. [PMID: 36559821 PMCID: PMC9784996 DOI: 10.3390/polym14245455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Carbon black (CB) particles tend to aggregate in aqueous solutions, and finding an optimum dispersing condition (e.g., selection of the type of dispersant) is one of the important tasks in related industries. In the present study, three types of styrene maleic acid (SMA) copolymer dispersants were synthesized, labeled respectively 'SMA-1000', 'SMA-2000', and 'SMA-3000', which have 1, 2, and 3 styrene groups in their repeating units. Then, asymmetrical flow field-flow fractionation (AsFlFFF) was employed to measure the particle size distributions of the aqueous CB dispersions. For the particle size analysis of the CB dispersions, dynamic light scattering (DLS) showed relatively lower reproducibility than AsFlFFF. AsFlFFF showed that the use of SMA-3000 yielded a CB dispersion with the most uniform particle size distribution. When the SMA-3000 dispersant was used, the particle size tended to increase after 1 h of milling as the milling time increased, probably due to the re-agglomeration of the particles by excessive milling. The particle size distributions from AsFlFFF were consistent with the colorimetric observations. With the SMA-3000 dispersant, the lowest L∗ value was observed after 1 h of milling. The AsFlFFF and colorimetric analyses suggest that a stable CB dispersion can be obtained by either 3-h of milling with the SMA-2000 or 1-h of milling with the SMA-3000.
Collapse
|
3
|
Sanjuan-Navarro L, Moliner-Martínez Y, Campíns-Falcó P. The state of art of nanocarbon black as analyte in a variety of matrices: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Sanjuan-Navarro L, Moliner-Martínez Y, Campíns-Falcó P. Characterization and Quantitation of Carbon Black Nanomaterials in Polymeric and Biological Aqueous Dispersants by Asymmetrical Flow Field Flow Fractionation. ACS OMEGA 2021; 6:31822-31830. [PMID: 34870005 PMCID: PMC8637946 DOI: 10.1021/acsomega.1c04527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Characterization of carbon black (CB) nanomaterials is required in industrial and research areas. Hence, in this study, asymmetrical flow field flow fractionation coupled to UV-vis and DLS detectors in series (AF4-UV-vis-DLS) was studied to evaluate the CB dispersion behavior in polymeric and biological dispersants, given the relevance of these media in practical applications. Under the experimental conditions, the results indicated that polymeric and biological dispersions showed size distributions with hydrodynamic diameters of 404 and 175 nm, respectively, for a particle core diameter of 40 nm. The polymeric dispersant provided lower stability as a function of time than that achieved by the biological dispersant. AF4 allowed separation of different core-sized CB (40, 69, and 72 nm) according to their hydrodynamic size using cross-flow rates of 0.5 mL·min-1 and 1 mL·min-1 for polymeric and biological dispersants, respectively. The dilution of the polymeric dispersion with different real water matrices produced a dramatic loss of dispersion stability, this effect being negligible in the case of biological dispersions.
Collapse
|
5
|
Maknun L, Sumranjit J, Siripinyanond A. Use of flow field-flow fractionation and single particle inductively coupled plasma mass spectrometry for size determination of selenium nanoparticles in a mixture. RSC Adv 2020; 10:6423-6435. [PMID: 35495991 PMCID: PMC9049635 DOI: 10.1039/c9ra07120b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
Various analytical techniques have been used for size analysis of selenium nanoparticles (SeNPs). These include flow field-flow fractionation (FlFFF), single particle inductively coupled plasma mass spectrometry (SP-ICP-MS), dynamic light scattering (DLS) and transmission electron microscopy (TEM). For hydrodynamic diameter estimation, the FlFFF technique was used and the results were compared with those analyzed by DLS. For core diameter estimation, the results obtained from SP-ICP-MS were compared with those from TEM. Two types of FlFFF channel were employed, i.e., symmetrical FlFFF (Sy-FlFFF) and asymmetrical FlFFF (Asy-FlFFF). Considering the use of FlFFF, optimization was performed on a Sy-FlFFF channel to select the most appropriate carrier liquid and membrane in order to minimize problems due to particle membrane interaction. The use of FL-70 and 10 kDa RC provided an acceptable compromise peak quality and size accuracy for all samples of SeNPs which were coated by proteins (positively charged SeNPs) and sodium dodecyl sulfate (negatively charged SeNPs). FlFFF always yielded the lower estimate of the hydrodynamic size than DLS as a reference method. The results obtained by SP-ICP-MS were consistent with the TEM method for the core diameter estimation. The results from FlFFF and the DLS reference method were significantly different as confirmed by paired t-test analysis, while the results provided by SP-ICP-MS and the TEM reference method were not significantly different. Furthermore, consecutive size analysis by SP-ICP-MS for the fractions collected from FlFFF was proposed for sizing of SeNP mixtures. The combined technique helps to improve the size analysis in the complex samples and shows more advantages than using only SP-ICP-MS.
Collapse
Affiliation(s)
- Luluil Maknun
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand +66-2-354-7151 +66-2-201-5195
| | - Jitapa Sumranjit
- National Nanotechnology Center, National Science and Technology Development Agency 111 Phahonyothin Rd., Klongluang Pathumthani 12120 Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand +66-2-354-7151 +66-2-201-5195
| |
Collapse
|
6
|
Song Y, Lu F, Li H, Wang H, Zhang M, Liu Y, Kang Z. Degradable Carbon Dots from Cigarette Smoking with Broad-Spectrum Antimicrobial Activities against Drug-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2018; 1:1871-1879. [DOI: 10.1021/acsabm.8b00421] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuxiang Song
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Fang Lu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hao Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Huibo Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Mengling Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| | - Zhenhui Kang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu P. R. China
| |
Collapse
|
7
|
Study on dispersibility of thermally stable carbon black particles in ink using asymmetric flow field-flow fractionation (AsFlFFF). Microchem J 2018. [DOI: 10.1016/j.microc.2018.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Lee S, Eum CH, Kim WJ. Surface Modification of Carbon Black Using Polymer Resin Synthesized by a Phenyl Radical Reaction. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2016. [DOI: 10.5012/jkcs.2016.60.4.286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Feasibility of asymmetrical flow field-flow fractionation as a method for detecting protective antigen by direct recognition of size-increased target-captured nanoprobes. J Chromatogr A 2015; 1422:239-246. [DOI: 10.1016/j.chroma.2015.09.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023]
|
10
|
Effect of SDS modification of carbon black nanoparticles on corrosion protection behavior of epoxy nanocomposite coatings. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1406-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Choi J, Kwen HD, Kim YS, Choi SH, Lee S. γ-ray synthesis and size characterization of CdS quantum dot (QD) particles using flow and sedimentation field-flow fractionation (FFF). Microchem J 2014. [DOI: 10.1016/j.microc.2014.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Jada A, Ridaoui H, Vidal L, Donnet JB. Control of carbon black aggregate size by using polystyrene-polyethylene oxide non ionic diblock copolymers. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Dou H, Lee YJ, Jung EC, Lee BC, Lee S. Study on steric transition in asymmetrical flow field-flow fractionation and application to characterization of high-energy material. J Chromatogr A 2013; 1304:211-9. [DOI: 10.1016/j.chroma.2013.06.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/24/2022]
|
14
|
HIRAMATSU T, OHNO S, SAITO Y, TOGASHI D, OHNO S, KAWAGUCHI S. Molecular Characterization of Water Soluble Polymers by Field-Flow Fractionation Multiangle Light Scattering FFF-MALS. KOBUNSHI RONBUNSHU 2013. [DOI: 10.1295/koron.70.72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|