1
|
In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy. SUSTAINABILITY 2020. [DOI: 10.3390/su12093831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The non-invasive depth-resolved imaging of pictorial layers in paintings by means of linear optical techniques represents a challenge in the field of Cultural Heritage (CH). The presence of opaque and/or highly-scattering materials may obstruct the penetration of the radiation probe, thus impeding the visualization of the stratigraphy of paintings. Nonlinear Optical Microscopy (NLOM), which makes use of tightly-focused femtosecond pulsed lasers as illumination sources, is an emerging technique for the analysis of painted objects enabling micrometric three-dimensional (3D) resolution with good penetration capability in semi-transparent materials. In this work, we evaluated the potential of NLOM, specifically in the modality of Multi-Photon Excitation Fluorescence (MPEF), to probe the stratigraphy of egg-tempera mock-up paintings. A multi-analytical non-invasive approach, involving ultraviolet-visible-near infrared (UV-Vis-NIR) Fiber Optics Reflectance Spectroscopy, Vis-NIR photoluminescence, and Laser Induced Fluorescence, yielded key-information for the characterization of the constituting materials and for the interpretation of the nonlinear results. Furthermore, the use of three nonlinear optical systems allowed evaluation of the response of the analyzed paints to different excitation wavelengths and photon doses, which proved useful for the definition of the most suitable measurement conditions. The micrometric thickness of the paint layers, which was not measurable by means of Optical Coherence Tomography (OCT), was instead assessed by MPEF, thus demonstrating the effectiveness of this nonlinear modality in probing highly-scattering media, while ensuring the minimal photochemical disturbance to the examined materials.
Collapse
|
2
|
Photoluminescence imaging of modern paintings: there is plenty of information at the microsecond timescale. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104618] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Biron C, Mounier A, Arantegui JP, Bourdon GL, Servant L, Chapoulie R, Roldán C, Almazán D, Díez-de-Pinos N, Daniel F. Colours of the « images of the floating world ». non-invasive analyses of Japanese ukiyo-e woodblock prints (18th and 19th centuries) and new contributions to the insight of oriental materials. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Abstract
Abstract
UV-Vis reflectance spectroscopy has been widely used as a non-invasive method for the study of cultural heritage materials for several decades. In particular, FORS, introduced in the 1980s, allows to acquire hundreds of reflectance spectra in situ in a short time, contributing to the identification of artist’s materials. More recently, microspectrofluorimetry has also been proposed as a powerful non-invasive method for the identification of dyes and lake pigments that provides high sensitivity and selectivity. In this chapter, the concepts behind these spectroscopic methodologies will be discussed, as well as the instrumentation and measurement modes used. Case studies related with different cultural heritage materials (paintings and manuscripts, textiles, carpets and tapestries, glass, metals, and minerals), which show the usefulness of UV-Vis reflectance spectroscopy and microspectrofluorimetry applied to the study of artworks, will also be presented.
Collapse
|
5
|
Mounier A, Le Bourdon G, Aupetit C, Lazare S, Biron C, Pérez-Arantegui J, Almazán D, Aramendia J, Prieto-Taboada N, Fdez-Ortiz de Vallejuelo S, Daniel F. Red and blue colours on 18th–19th century Japanese woodblock prints: In situ analyses by spectrofluorimetry and complementary non-invasive spectroscopic methods. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
An inexpensive NIR LED Webcam photometer for detection of adulterations in hydrated ethyl alcohol fuel. Microchem J 2017. [DOI: 10.1016/j.microc.2017.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
|