1
|
Wan Nafi A, Taseidifar M. Removal of hazardous ions from aqueous solutions: Current methods, with a focus on green ion flotation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115666. [PMID: 35849932 DOI: 10.1016/j.jenvman.2022.115666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Hazardous ions, like those of heavy metals, cause significant health and environmental problems when they are discharged into water resources naturally or through various industrial processes. Removing these ions from water is of significant importance in the provision of high-quality water for drinking and agricultural usage. This work discusses current techniques that are frequently used for the removal of heavy-metal ions from aqueous solutions by absorption, particularly the use of biodegradable surfactants in ion flotation. Certain new surfactants promise high efficiency in their use in the ion-flotation process and in their application in industrial-water treatment to remove heavy metals. As an example, this work demonstrates the high efficiency of surfactants based on an amino-acid (L-cysteine) in removing a range of heavy-metal ions in a simple, single-stage ion-flotation process. High foaming ability, the ability to operate in various temperatures and pHs, decomposing into natural products and high binding affinity for heavy-metal ions make the cysteine-based surfactants a highly suitable compound to replace current commercial surfactants in ion- and froth-flotation processes. Removal of particular ions can also be achieved in ion flotation; a suitable choice of parameters, such as pH and surfactant concentration, favours the surfactant binding to those ions. Further intensive work is required to develop an optimal process to recover valuable elements from waste solutions.
Collapse
Affiliation(s)
- Atikah Wan Nafi
- School of Science, UNSW Canberra, Canberra, ACT, 2610, Australia
| | | |
Collapse
|
2
|
Selective determination of As(III) and total inorganic arsenic in rice sample using in-situ μ-sorbent formation solid phase extraction and FI-HG AAS. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Simultaneous extraction of chromium and cadmium from bean samples by SrFe12O19@CTAB magnetic nanoparticles and determination by ETAAS: An experimental design methodology. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Öztürk Er E, Dalgıç Bozyiğit G, Büyükpınar Ç, Bakırdere S. Magnetic Nanoparticles Based Solid Phase Extraction Methods for the Determination of Trace Elements. Crit Rev Anal Chem 2020; 52:231-249. [DOI: 10.1080/10408347.2020.1797465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Elif Öztürk Er
- Chemical Engineering Department, Yıldız Technical University, İstanbul, Turkey
| | - Gamze Dalgıç Bozyiğit
- Faculty of Civil Engineering, Department of Environmental Engineering, Yıldız Technical University, İstanbul, Turkey
| | - Çağdaş Büyükpınar
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
5
|
Pan SZ, Jin CZ, Yang XA, Zhang WB. Ultrasound enhanced solid-phase extraction of ultra-trace arsenic on Fe3O4@AuNPs magnetic particles. Talanta 2020; 209:120553. [DOI: 10.1016/j.talanta.2019.120553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/03/2019] [Accepted: 11/09/2019] [Indexed: 11/27/2022]
|
6
|
Jinadasa KK, Peña-Vázquez E, Bermejo-Barrera P, Moreda-Piñeiro A. Ionic imprinted polymer solid-phase extraction for inorganic arsenic selective pre-concentration in fishery products before high-performance liquid chromatography - inductively coupled plasma-mass spectrometry speciation. J Chromatogr A 2020; 1619:460973. [PMID: 32081487 DOI: 10.1016/j.chroma.2020.460973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Low levels of inorganic arsenic [As(III) and As(V)] in fishery products have been selectively isolated from fish extracts (1.0 g of wet fish samples pre-treated with 10 mL of 1:1 methanol/water under sonication at 25 °C for 30 min) by ionic imprinted polymer (IIPs) based solid phase extraction procedure (on-column mode). The selective adsorbent was synthesized using sodium (meta) arsenite as a template, 1-vinyl imidazole as a functional monomer, divinylbenzene as a cross-linker, and 2,2'-azobisisobutyronitrile as an initiator. Optimized pre-concentration conditions imply fish extract (10 mL) pH adjustment at 8.5 before loading (flow rate of 0.25 mL min-1), and elution with ultrapure water (2 mL) at 0.50 mL min-1. A pre-concentration factor of 50 was finally obtained after evaporation to dryness (N2 stream) and re-dissolution in 0.2 mL of ultrapure water before HPLC-ICP-MS. Synthesized material was found to pre-concentrate inorganic arsenic species; whereas organic arsenic compounds, mainly arsenobetaine (the major organoarsenic compound in fish/seafood products), were not found to interact with the adsorbent. The developed selective method gave limits of quantification of 1.05 and 1.31 µg kg-1 for As (III) and As (V), respectively, and good precision [relative standard deviations lower than 12% in fish extracts spiked at several As (III) and As (V) levels]. The proposed method was finally applied to the selective determination of As (III) and As (V) species in several fishery products.
Collapse
Affiliation(s)
- Kamal K Jinadasa
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n. 15782, Santiago de Compostela, Spain.
| |
Collapse
|
7
|
Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Novel magnetic nanoparticles as adsorbent in ultrasound-assisted micro-solid-phase extraction for rapid pre-concentration of some trace heavy metal ions in environmental water samples: desirability function. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00954-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
9
|
Dispersive micro-solid phase extraction using magnetic ZnFe2O4 nanotubes as adsorbent for preconcentration of Co(II), Ni(II), Mn(II) and Cd(II) followed by ICP-MS determination. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
FI-ICP-OES determination of Pb in drinking water after pre-concentration using magnetic nanoparticles coated with ionic liquid. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Chen S, Yan J, Li J, Lu D. Magnetic ZnFe2O4 nanotubes for dispersive micro solid-phase extraction of trace rare earth elements prior to their determination by ICP-MS. Mikrochim Acta 2019; 186:228. [DOI: 10.1007/s00604-019-3342-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
|
12
|
Yang XA, Shi MT, Leng D, Zhang WB. Fabrication of a porous hydrangea-like Fe3O4@MnO2 composite for ultra-trace arsenic preconcentration and determination. Talanta 2018; 189:55-64. [DOI: 10.1016/j.talanta.2018.06.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
|
13
|
Preconcentration on metal organic framework UiO-66 for slurry sampling hydride generation-atomic fluorescence spectrometric determination of ultratrace arsenic. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Munonde TS, Maxakato NW, Nomngongo PN. Preconcentration and speciation of chromium species using ICP-OES after ultrasound-assisted magnetic solid phase extraction with an amino-modified magnetic nanocomposite prepared from Fe3O4, MnO2 and Al2O3. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2126-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
OZBEK N, TURAN GT, SENKAL BF, AKMAN S. A Practical Application of Solid-phase Extraction Using a Syringe Filled with Sorbent for the Determination of Lead and Cadmium in Water. ANAL SCI 2017; 33:807-811. [DOI: 10.2116/analsci.33.807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Nil OZBEK
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry
| | | | - Bahire Filiz SENKAL
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry
| | - Suleyman AKMAN
- Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry
| |
Collapse
|