1
|
Belal F, Mabrouk M, Hammad S, Ahmed H, Barseem A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 2024; 34:119-138. [PMID: 37222883 DOI: 10.1007/s10895-023-03276-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
2
|
Hassanvand Z, Jalali F, Nazari M, Parnianchi F, Santoro C. Carbon Nanodots in Electrochemical Sensors and Biosensors: A Review. ChemElectroChem 2020. [DOI: 10.1002/celc.202001229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Maryam Nazari
- Faculty of Chemistry Razi University Kermanshah Iran
| | | | - Carlo Santoro
- Department of Chemical Engineering and Analytical Science The University of Manchester The Mill Sackville Street Manchester M13PAL UK
| |
Collapse
|
3
|
Vivekanandan AK, Subash V, Chen SM, Chen SH. Sonochemical synthesis of nickel-manganous oxide nanocrumbs decorated partially reduced graphene oxide for efficient electrochemical reduction of metronidazole. ULTRASONICS SONOCHEMISTRY 2020; 68:105176. [PMID: 32480290 DOI: 10.1016/j.ultsonch.2020.105176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
In the present work, we report on the synthesis of crump-like nickel manganous oxide nanoparticles decorated partially reduced graphene oxide (NiMnO@pr-GO) nanocomposite through high-intensity ultrasonic bath sonication (ultrasonic frequency = 37 kHz and power = 150 W). The NiMnO@pr-GO nanocomposite modified glassy carbon electrode (GCE) was then employed for the electrochemical reduction of detrimental metronidazole (MNZ). The crystalline phase and formation of the NiMnO@pr-GO nanocomposites were confirmed by X-ray diffraction and other spectroscopic techniques. The cyclic voltammetry results demonstrate that this NiMnO@pr-GO nanocomposite modified GCE has a lower reduction potential and higher catalytic activity towards MNZ than do NiMnO and GO modified GCEs. Under optimized conditions, the fabricated NiMnO@pr-GO electrode can detect metronidazole over a wide linear range with a lower limit of detection of 90 nM. The sensitivity of the sensor was 1.22 µA µM-1cm-2 and was found to have excellent selectivity and durability for the detection of MNZ.
Collapse
Affiliation(s)
- Alangadu Kothandan Vivekanandan
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, No:43, Section 4, Keelung Road, Taipei 106, Taiwan, Republic of China
| | - Vetriselvi Subash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.
| | - Shih-Hsun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, No:43, Section 4, Keelung Road, Taipei 106, Taiwan, Republic of China.
| |
Collapse
|
4
|
Zhao C, Song X, Liu Y, Fu Y, Ye L, Wang N, Wang F, Li L, Mohammadniaei M, Zhang M, Zhang Q, Liu J. Synthesis of graphene quantum dots and their applications in drug delivery. J Nanobiotechnology 2020; 18:142. [PMID: 33008457 PMCID: PMC7532648 DOI: 10.1186/s12951-020-00698-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/24/2020] [Indexed: 12/23/2022] Open
Abstract
This review focuses on the recent advances in the synthesis of graphene quantum dots (GQDs) and their applications in drug delivery. To give a brief understanding about the preparation of GQDs, recent advances in methods of GQDs synthesis are first presented. Afterwards, various drug delivery-release modes of GQDs-based drug delivery systems such as EPR-pH delivery-release mode, ligand-pH delivery-release mode, EPR-Photothermal delivery-Release mode, and Core/Shell-photothermal/magnetic thermal delivery-release mode are reviewed. Finally, the current challenges and the prospective application of GQDs in drug delivery are discussed.
Collapse
Affiliation(s)
- Changhong Zhao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Xuebin Song
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Ya Liu
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Yifeng Fu
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Lilei Ye
- SHT Smart High-Tech AB, 411 33, Gothenburg, Sweden
| | - Nan Wang
- SHT Smart High-Tech AB, 411 33, Gothenburg, Sweden
| | - Fan Wang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Lu Li
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ming Zhang
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Qiqing Zhang
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, P. R. China.
| | - Johan Liu
- Electronics Materials and Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
- School of Automation and Mechanical Engineering, SMIT Center, Shanghai University, No 20, Chengzhong Road, Box 808, ShanghaiShanghai, 201800, China.
| |
Collapse
|
5
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
6
|
Synergistic electrocatalytic activity of In2O3@FMWCNTs nanocomposite for electrochemical quantification of dobutamine in clinical patient blood and in injection dosage form. Talanta 2020; 208:120362. [DOI: 10.1016/j.talanta.2019.120362] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/25/2019] [Accepted: 09/14/2019] [Indexed: 11/22/2022]
|
7
|
Hasanpour F, Nekoeinia M, Semnani A, Shirazinia R. Synthesis of semicarbazide catechol derivative as a potential electrode modifier: application in electrocatalysis of catechol amine drugs. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00764-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Safari M, Najafi S, Arkan E, Amani S, Shahlaei M. Facile aqueous synthesis of Ni-doped CdTe quantum dots as fluorescent probes for detecting pyrazinamide in plasma. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Hu L, Zheng S, Chen Z, Huang B, Yang J, Chen Q. 3D graphene modified sphere-like VPO4/C as a high-performance anode material for lithium-ion batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|