1
|
Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154534. [PMID: 36371955 DOI: 10.1016/j.phymed.2022.154534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Safety and toxicity have become major challenges in the internationalization of Chinese medicine. Inspite of its wide application, security problems of Chinese medicine still occur from time to time, raising widespread concerns about its safety. Most of the studies either only partially discussed the intrinsic toxicities or extrinsic harmful residues in Chinese medicine, or briefly described detoxification and attenuation methods. It is necessary to systematically discuss Chinese medicine's extrinsic and intrinsic toxic components and corresponding toxicity detoxification or detection methods as a whole. PURPOSE This review comprehensively summarizes various toxic components in Chinese medicine from intrinsic and extrinsic. Then the corresponding methods for detoxification or detection of toxicity are highlighted. It is expected to provide a reference for safeguards for developing and using Chinese medicine. METHODS A literature search was conducted in the databases, including PubMed, Web of Science,Wan-fang database, and the China National Knowledge Infrastructure (CNKI). Keywords used were safety, toxicity, intrinsic toxicities, extrinsic harmful residues, alkaloids, terpene and macrolides, saponins, toxic proteins, toxic crystals, minerals, heavy metals, pesticides, mycotoxins, sulfur dioxide, detoxification, detection, processing (Paozhi), compatibility (Peiwu), Chinese medicine, etc., and combinations of these keywords. All selected articles were from 2006 to 2022, and each was assessed critically for our exclusion criteria. Studies describe the classification of toxic components of Chinese medicine, the toxic effects and mechanisms of Chinese medicine, and the corresponding methods for detoxification or detection of toxicity. RESULTS The toxic components of Chinese medicines can be classified as intrinsic toxicities and extrinsic harmful residues. Firstly, we summarized the intrinsic toxicities of Chinese medicine, the adverse effects and toxicity mechanisms caused by these components. Next, we focused on the detoxification or attenuation methods for intrinsic toxicities of Chinese medicine. The other main part discussed the latest progress in analytical strategies for exogenous hazardous substances, including heavy metals, pesticides, and mycotoxins. Beyond reviewing mainstream instrumental methods, we also introduced the emerging biochip, biosensor and immuno-based techniques. CONCLUSION In this review, we provide an overall assessment of the recent progress in endogenous toxins and exogenous hazardous substances concerning Chinese medicine, which is expected to render deeper insights into the safety of Chinese medicine.
Collapse
Affiliation(s)
- Wenyue Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
2
|
A simple and reliable electroanalytical method employing a disposable commercial electrode for simultaneous determination of lead(II) and mercury(II) in beer. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
Kong D, Li X, Tang Y, Sui M, Li J, Ma Y, Wang G, Gu W, Guo X, Yang M. A highly parallel DTT/MB-DNA/Au electrochemical biosensor for trace Hg monitoring by using configuration occupation approach and SECM. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113391. [PMID: 35286957 DOI: 10.1016/j.ecoenv.2022.113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution and medicine safety have aroused increasing public concerns due to human health. Amongst various contaminants, mercury is of special attention owing to their environmental persistence and biogeochemical recycling and ecological risks. Herein, a simple and highly parallel electrochemical biosensor for Hg determination was designed and investigated. The proposed biosensor was prepared and compared between (1) DTT/MB-DNA/Au with configuration occupation approach and (2) MCH/MB-DNA/Au with passivation approach. According to the combined results of scanning electrochemical microscope (SECM) and Randles-Sevcik equation, the DTT modified electrode exhibited high uniformity on DNA distribution and superb stability on electron transfer in Hg2+ detection. Evidentially, the response value of proposed DTT/MB-DNA/Au was increased from 57.518% to 97.607%, while RSD% between duplicate runs had dropped from 22.658% to 0.223% (n = 3). Moreover, the increased proportion of effective working area was 467.380% compared with general sensors. Besides, DTT concentration, DNA concentration as well as assembly time were optimized, utilizing electrochemical impedance spectroscopy (EIS), Cyclic Voltammetry (CV) and Square Wave Anode Stripping Voltammetry (SWASV). This optimized biosensor exhibited an excellent selectivity toward Hg2+ over Cu2+, As2+, Cd2+, Pb2+, Cr3+, Ni2+ and Zn2+ etc., and the stability of DTT/MB-DNA/Au were at least two times better even after 3 days under room temperature. Also, a linear relation was observed between the peak current and Hg2+concentrations in a range from 0.25 nM to 2.00 μM with a detection limit of 53.00 pM under optimal conditions. Finally, DTT/MB-DNA/Au was applied for plants and medical products analysis. In all, this optimized DTT/MB-DNA/Au with advantages of high repeatability and sensitivity would provide a new insight into the design and application of biosensor for reliable sensing in safeguarding plant protection and medicinal safety.
Collapse
Affiliation(s)
- Dandan Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Xinyue Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yang Tang
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Jinping Li
- Academy of Plateau Science and Sustainability, Qinghai Normal University / Key Laboratory of medicinal animal and plant resources of Qinghai Tibet Plateau, Xining, Qinghai 810008, PR China
| | - Yonggui Ma
- Academy of Plateau Science and Sustainability, Qinghai Normal University / Key Laboratory of medicinal animal and plant resources of Qinghai Tibet Plateau, Xining, Qinghai 810008, PR China
| | - Gaofeng Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China; Academy of Plateau Science and Sustainability, Qinghai Normal University / Key Laboratory of medicinal animal and plant resources of Qinghai Tibet Plateau, Xining, Qinghai 810008, PR China
| | - Wei Gu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China; Academy of Plateau Science and Sustainability, Qinghai Normal University / Key Laboratory of medicinal animal and plant resources of Qinghai Tibet Plateau, Xining, Qinghai 810008, PR China
| | - Xuegang Guo
- Academy of Plateau Science and Sustainability, Qinghai Normal University / Key Laboratory of medicinal animal and plant resources of Qinghai Tibet Plateau, Xining, Qinghai 810008, PR China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
4
|
Health risk assessment and bioaccessibility of toxic elements in edible and medicinal plants under different consumption methods. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Oliveira GC, Vicentino PO, Cassella RJ, Xing YT, Ponzio EA. Simultaneous Voltammetric Determination of Cd
2+
and Pb
2+
in Gasoline Samples Employing a Chemically Modified Acrylonitrile‐Butadiene‐Styrene (ABS) Composite Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202060139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Grasielli C. Oliveira
- Grupo de Eletroquímica e Eletroanalítica (G2E) Instituto de Química Universidade Federal Fluminense Morro São João Batista s/n – Laboratory 106B, Campus Valonguinho, CEP 24020-141 Niterói RJ Brazil
| | - Priscila O. Vicentino
- Departamento de Química Analítica Instituto de Química Universidade Federal Fluminense Campus Valonguinho, CEP 24020-141 Niterói RJ Brazil
| | - Ricardo J. Cassella
- Departamento de Química Analítica Instituto de Química Universidade Federal Fluminense Campus Valonguinho, CEP 24020-141 Niterói RJ Brazil
| | - Yutao T. Xing
- Laboratório de Microscopia Eletrônica de Alta Resolução Centro de Caracterização Avançada para Indústria de Petróleo (LaMAR/CAIPE) Universidade Federal Fluminense Niterói 24210-346, Brasil
| | - Eduardo A. Ponzio
- Grupo de Eletroquímica e Eletroanalítica (G2E) Instituto de Química Universidade Federal Fluminense Morro São João Batista s/n – Laboratory 106B, Campus Valonguinho, CEP 24020-141 Niterói RJ Brazil
| |
Collapse
|
6
|
Kong D, Yao J, Li X, Luo J, Yang M. A reusable AuNPS with increased stability applied for fast screening of trace heavy metals in edible and medicinal marine products. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111107. [PMID: 32823057 DOI: 10.1016/j.ecoenv.2020.111107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal pollution in marine environment poses a severe threat to the safety of marine products and is thus causing increasingly concerns in terms of their toxicity and potential health risks pose to human. Due to the complex matrix of marine products, a fast screening method for heavy metals at trace level with low price, reusability, high accuracy and long lifetime is of urgency and necessity for consumers and processing factories. This work described a simplified screening system through the preparation, characterization and particular application of Au nano particle sensor (AuNPS) in the complex marine matrix, the main aim is to significantly increase the stability, sensitivity and lifetime of detection system dedicated to Cu and Hg trace analysis in marine products. It is worth mentioning that, the proposed screening system was characterized through electrochemical experiments and theoretical calculations, which could be a new evidence for selecting the detection system in commercially complex samples. Importantly, the discipline of deposition and oxidative stripping process on AuNPS was explained based on the mechanism of Metal Ion Deficient Layer (MIDL), and illustrated with SEM changes during stripping process, as well as the dissolving-out rate of metals on AuNPS material. Moreover, to further improve the reusability and stability of AuNPS sensor, the complex marine matrix was purified by pre-plating interferences on indium tin oxide glass electrode. The screening system exhibited a liner response in the range of 0.02-0.10 μg mL-1 for Hg, 0.01-0.10 μg mL-1 and 0.001-0.01 μg mL-1 for Cu with the detection limits of 0.138 mg kg-1 and 1.51 mg kg-1 in marine matrix, respectively. The sensitivity and lifetime was at least two times better as compared to similar works even after 20-times use. Finally, this proposed analysis system combined with purification procedure was successfully applied for the edible and medicinal marine products analysis, meanwhile, the accuracy and stability were confirmed with standard analytical methods.
Collapse
Affiliation(s)
- Dandan Kong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Jiaojiao Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Xinyue Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
7
|
Yan H, Kong D, Li X, Luo J, Fan Z, Yang M. Multi-channel electroanalysis of As (III), Hg and Cu in the complex matrix of Bombyx batryticatus after pre-purification. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Petrović S, Guzsvány V, Ranković N, Beljin J, Rončević S, Dalmacija B, Ashrafi AM, Kónya Z, Švancara I, Vytřas K. Trace level voltammetric determination of Zn(II) in selected nutrition related samples by bismuth-oxychloride-multiwalled carbon nanotube composite based electrode. Microchem J 2019. [DOI: 10.1016/j.microc.2018.12.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|