1
|
Hagarová I, Andruch V. Enhancing Analytical Potential for Ultratrace Analysis of Inorganic Oxyanions Using Extraction Procedures with Layered Double Hydroxides. TOXICS 2024; 12:780. [PMID: 39590960 PMCID: PMC11598274 DOI: 10.3390/toxics12110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
This article provides an overview of the use of layered double hydroxides (LDHs) as effective sorbents in various extraction methods, including column-based solid-phase extraction (SPE), dispersive solid-phase extraction (DSPE), and magnetic solid-phase extraction (MSPE), for the separation and preconcentration of inorganic oxyanions of chromium, arsenic, and selenium. The primary focus is on enhancing the analytical performance of spectrometric detection techniques, particularly in terms of sensitivity and selectivity when analyzing low concentrations of target analytes in complex matrices. LDHs, which can be readily prepared and structurally modified with various substances, offer promising potential for the development of novel analytical methods. When used in analytical extraction procedures and following careful optimization of experimental conditions, the developed methods have yielded satisfactory results, as documented by studies reviewed in this paper. This review is intended to assist analytical chemists in scientific laboratories involved in developing new extraction procedures.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Vasil Andruch
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia;
| |
Collapse
|
2
|
Bagheri V, Naseri A, Sajedi-Amin S, Soylak M, Zhang Z. Using Fe3O4-graphene oxide-modified chitosan with melamine magnetic nanocomposite in the removal and magnetic dispersive solid-phase microextraction of Cr (VI) ion in aquatic samples. CHEMICAL PAPERS 2024; 78:381-396. [DOI: 10.1007/s11696-023-03096-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 09/17/2023] [Indexed: 08/27/2024]
|
3
|
Ramli NN, Kurniawan SB, Ighalo JO, Mohd Said NS, Marsidi N, Buhari J, Ramli Shah RA, Zulkifli M, Alias J, Daud NM, Ahmad J, Othman AR, Sheikh Abdullah SR, Abu Hasan H. A review of the treatment technologies for hexavalent chromium contaminated water. Biometals 2023; 36:1189-1219. [PMID: 37209220 DOI: 10.1007/s10534-023-00512-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The toxicity of hexavalent chromium (Cr(VI)) present in the environment has exceeded the current limits or standards and thus may lead to biotic and abiotic catastrophes. Accordingly, several treatments, including chemical, biological, and physical approaches, are being used to reduce Cr(VI) waste in the surrounding environment. This study compares the Cr(VI) treatment approaches from several areas of science and their competence in Cr(VI) removal. As an effective combination of physical and chemical approaches, the coagulation-flocculation technique removes more than 98% of Cr(VI) in less than 30 min. Most membrane filtering approaches can remove up to 90% of Cr(VI). Biological approaches that involve the use of plants, fungi, and bacteria also successfully eliminate Cr(VI) but are difficult to scale up. Each of these approaches has its benefits and drawbacks, and their applicability is determined by the research aims. These approaches are also sustainable and environmentally benign, thus limiting their effects on the ecosystem.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, 379 81, Třeboň, Czech Republic
| | - Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, P. M. B., 5025, Nigeria
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nuratiqah Marsidi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Radhiatul Atiqah Ramli Shah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Maryam Zulkifli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jahira Alias
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nurull Muna Daud
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jamilah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Darwish AS, Mahmoud SS, Bayaumy FE. Microwave-assisted hydrothermal fabrication of hierarchical-stacked mesoporous decavanadate-intercalated ZnAl nanolayered double hydroxide to exterminate different developmental stages of Trichinella spiralis and Schistosoma mansoniin-vitro. Heliyon 2023; 9:e18110. [PMID: 37483817 PMCID: PMC10362335 DOI: 10.1016/j.heliyon.2023.e18110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Hierarchically stacked mesoporous zinc-aluminium nanolayered-double-hydroxide intercalated with decavanadate (ZnAl-LDH-V10O28) is constructed using anion-exchange process via microwave-hydrothermal treatment. Physicochemical properties of ZnAl-LDH-V10O28 are characterized in detail. Decavanadate anions are intimately interacted with ZnAl-LDH nanosheets, generating highly ordered architecture of well-dimensioned stacking blocks of brucite-like nanolayers (∼8 nm). Such hierarchy improves surface-porosity and electrical-impedivity of ZnAl-LDH-V10O28 with declining its zeta-potential (ζav = 8.8 mV). In-vitro treatment of various developmental-stages of Trichinella spiralis and Schistosoma mansoni by ZnAl-LDH-V10O28 is recognized using parasitological and morphological (SEM/TEM) analyses. ZnAl-LDH-V10O28 exterminates muscle-larvae and adult-worms of Trichinella spiralis, and juvenile and adult Schistosoma mansoni, yielding near 100% mortality with rates achieving 5%/h within about 17 h of incubation. This parasiticidal behavior results from the symphony of biological activity gathering decavanadate and LDH-nanosheets. Indeed, ZnAl-LDH-V10O28 nanohybrid sample, as a promissory biocide for killing food-borne/waterborne parasites, becomes a futuristic research hotspot for studying its in-vivo bioactivity and impact-effectiveness on parasite molecular biology.
Collapse
Affiliation(s)
- Atef S. Darwish
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Soheir S. Mahmoud
- Schistosome Biological Materials Supply Program, Theodor Bilharz Research Institute, Giza, Egypt
| | - Fatma E.A. Bayaumy
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Hagarová I, Nemček L. Analytical Application of Layered Double Hydroxides as High-Capacity Sorbents in Dispersive Solid Phase Extraction for the Separation and Preconcentration of (Ultra)Trace Heavy Metals. Crit Rev Anal Chem 2023; 54:3114-3127. [PMID: 37350631 DOI: 10.1080/10408347.2023.2227906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Separation/preconcentration procedures are of great importance in the elemental analysis. In this context, layered double hydroxides (LDH) have emerged as promising sorbents in dispersive solid phase extraction (DSPE) procedures. By optimizing the DSPE procedure, lower limits of detection (LOD) can be achieved, making less sensitive detection methods viable for accurate quantification of the (ultra)trace analytes. This is of significant importance from a financial standpoint, as it enables the utilization of cost-effective and readily available detection methods. The extraction procedures using LDH typically require only a few minutes to complete, with some procedures taking as little as 1.5 min. Many studies have reported techniques that eliminate the need for centrifugation, which results in time savings and reduced sample handling. This is particularly important for ultratrace analysis. However, it has been observed that the use of certified reference materials (CRM) to validate the reliability of the developed extraction procedures is often overlooked. The literature also demonstrates inconsistencies in the terminology and abbreviations employed for extraction procedures, which may cause confusion. LDH, extensively studied for various purposes, offer a wide range of modifications and can form composites with other materials, enhancing their surface characteristics and adsorption performance. The development of novel and effective nanocomposites will undoubtedly be a research objective in this field of analytical chemistry, aiming to advance the reliability of extraction procedures. Moreover, integrating of LDH-based DSPE procedures with appropriate detection methods can enable potential automation and pave the way for online applications.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Lucia Nemček
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
6
|
Patel M, Bisht N, Prabhakar P, Sen RK, Kumar P, Dwivedi N, Ashiq M, Mondal DP, Srivastava AK, Dhand C. Ternary nanocomposite-based smart sensor: Reduced graphene oxide/polydopamine/alanine nanocomposite for simultaneous electrochemical detection of Cd 2+, Pb 2+, Fe 2+, and Cu 2+ ions. ENVIRONMENTAL RESEARCH 2023; 221:115317. [PMID: 36657597 DOI: 10.1016/j.envres.2023.115317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Heavy metal ion (HMI) sensors are the most sought commercial devices for environmental monitoring and food analysis research due to serious health concerns associated with HMI overdosage. Herein, we developed an effective electrochemical sensor for simultaneous detection of four HMI (Cd2+, Pb2+, Fe2+, and Cu2+) using a ternary nanocomposite of reduced graphene oxide functionalized with polydopamine and alanine (ALA/pDA/rGO). Comprehensive spectroscopic and microscopic characterizations were performed to ensure the formation of the ternary nanocomposite. The developed nanocomposite on glassy carbon electrode (GCE) yields >2-fold higher current than GO/GCE electrode with excellent electrochemical stability and charge transfer rate. Using DPV, various chemical and electrochemical parameters, such as supporting electrolyte, buffer pH, metal deposition time, and potential, were optimized to achieve highly sensitive detection of targeted HMI. For Cd2+, Pb2+, Fe2+, and Cu2+ sensing devised sensor exhibited detection limits of 1.46, 2.86, 50.23, and 17.95 ppb and sensitivity of 0.0929, 0.0744, 0.0051, and 0.0394 μA/ppb, respectively, with <6% interference. The sensor worked similarly well for real water samples with HMI. This study demonstrates a novel strategy for concurrently detecting and quantifying multiple HMI in water and soil using a smart ternary nanocomposite-based electrochemical sensor, which can also detect HMI in food samples.
Collapse
Affiliation(s)
- Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Bisht
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Priyanka Prabhakar
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Raj Kumar Sen
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradip Kumar
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Ashiq
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D P Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Construction of efficient Ni-FeLDH@MWCNT@Cellulose acetate floatable microbeads for Cr(VI) removal: Performance and mechanism. Carbohydr Polym 2023; 311:120771. [PMID: 37028881 DOI: 10.1016/j.carbpol.2023.120771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Water pollution is an aggravating dilemma that is extending around the world, threatening human survival. Strikingly, the notorious heavy metals like hexavalent chromium ions (Cr6+) cause environmental problems raising awareness of the essentials for finding feasible solutions. For this purpose, the self-floating Ni-FeLDH@MWCNT@CA microbeads were prepared for removing Cr6+. The morphological, thermal, and composition characteristics of Ni-FeLDH@MWCNT@CA microbeads were analyzed using XRD, FTIR, TGA, SEM, XPS, and zeta potential. Notably, the adsorption aptitude of Cr6+ was enhanced by raising the MWCNTs proportion to 5 wt% in microbeads. The Cr6+ adsorption onto Ni-FeLDH@MWCNT@CA fitted Langmuir and Freundlich isotherm models with qm of 384.62 mg/g at pH 3 and 298 K. The adsorption process was described kinetically by the pseudo-2nd order model. More importantly, the adsorption of Cr6+ onto Ni-FeLDH@MWCNT@CA occurred via electrostatic interactions, inner/outer sphere complexations, ion exchange, and reduction mechanisms. Besides, the cycling test showed the remarkable reusability of Ni-FeLDH@MWCNT@CA floatable microbeads for five subsequent cycles. The self-floating Ni-FeLDH@MWCNT@CA microbeads in this work provide essential support for the potential applications for the remediation of heavy metals-containing wastewater.
Collapse
|
8
|
Tokalıoğlu Ş, Shahir S, Senkal BF, Akgül ET. Speciation of chromium in water samples and lettuce extracts in the Unified bioaccessibility method (UBM) saliva solution by vortex assisted-dispersive solid phase microextraction. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Grover A, Mohiuddin I, Lee J, Brown RJC, Malik AK, Aulakh JS, Kim KH. Progress in pre-treatment and extraction of organic and inorganic pollutants by layered double hydroxide for trace-level analysis. ENVIRONMENTAL RESEARCH 2022; 214:114166. [PMID: 36027961 DOI: 10.1016/j.envres.2022.114166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Continuous release of pollutants into the environment poses serious threats to environmental sustainability and human health. For trace-level analysis of pollutants, layered double hydroxide (LDH) is an attractive option to impart enhanced sorption capability and sensitivity toward pollutants because of its unique layered structure, tunable interior architecture, high anion-exchange capacities, and high porosity (e.g., Zn/Cr LDH/DABCO-IL, Ni/Al LDH, CS-Ni/Fe LDH, SDS-Fe3O4@SiO2@Mg-Al LDH, Boeh/Mg/Al LDH/pC, and Fe@NiAl LDH). In concert with the well-defined analytical methodologies (e.g., HPLC and GC), the LDH materials can be employed to detect trace-level targets (e.g., as low as ∼ 20 fg/L for phenols) in aqueous environments. This review highlights LDH as a promising material for pre-treatment of a variety of organic and inorganic target pollutants in complex real matrices. Challenges and future requirements for research into LDH-based analytical methods are also discussed.
Collapse
Affiliation(s)
- Aman Grover
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Irshad Mohiuddin
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Richard J C Brown
- Atmospheric Environmental Science Department, National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Determination of ultra-trace gold in cosmetics using aluminum-magnesium layered double hydroxide/graphene oxide nanocomposite. Talanta 2022; 245:123460. [DOI: 10.1016/j.talanta.2022.123460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
|
11
|
Guo X, Ren T, Ji J, Yang Y, Di X. An alternative analytical strategy based on QuEChERS and dissolvable layered double hydroxide dispersive micro-solid phase extraction for trace determination of sulfonylurea herbicides in wolfberry by LC-MS/MS. Food Chem 2022; 396:133652. [PMID: 35841677 DOI: 10.1016/j.foodchem.2022.133652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022]
Abstract
In this work, a combination of QuEChERS and dispersive micro-solid phase extraction (D-μ-SPE) based on dissolvable layered double hydroxide (LDH) has been established for preconcentration and enrichment of sulfonylurea herbicides (SUHs) in wolfberry samples. The QuEChERS was used for extraction and purification of SUHs, followed by D-μ-SPE for further enrichment of targeted analytes to obtain superior extraction performance. Dissolvable LDH nanosheets were used as absorbents, thus eliminating the elution step needed in traditional D-μ-SPE. The main influence experimental variables including pH of sample solution, amount of LDH, vortex time and volume of acidic solution were optimized in detail. Under the optimized conditions, the proposed method shows high precision (RSDs < 12.7%), low limits of detection (0.01-0.5 ng/g) and limits of quantitation (0.1-2.0 ng/g), acceptable recovery (80.1%-97.1%), thus making it a good alternative analytical strategy for the determination of SUHs residues at the low nanogram per gram range with desirable sensitivity.
Collapse
Affiliation(s)
- Xiaoli Guo
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| | - Tingze Ren
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jianchun Ji
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Xin Di
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Hui Medicine, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
12
|
Granulation of Nickel-Aluminum-Zirconium Complex Hydroxide Using Colloidal Silica for Adsorption of Chromium(VI) Ions from the Liquid Phase. Molecules 2022; 27:molecules27082392. [PMID: 35458592 PMCID: PMC9028990 DOI: 10.3390/molecules27082392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
We combined a nickel-aluminum-zirconium complex hydroxide (NAZ) with colloidal silica as a binder to prepare a granulated agent for adsorbing heavy metals from aqueous media. Three samples with different particle diameters were prepared to evaluate the effects on the properties: small (NAZ-S), medium (NAZ-M), and large (NAZ-L). We confirmed the granulation of the prepared samples at a binder content of 25%. NAZ-S had the largest specific surface area and number of hydroxyl groups, followed by NAZ-M and then NAZ-L. Regarding the adsorption capacity, NAZ-S adsorbed the most chromium(VI) ions followed by NAZ-M and then NAZ-L. The binding energy of Cr(2p) at 575-577 eV was detected after adsorption, and the effects of the temperature, contact time, and pH on the adsorption of chromium(VI) ions were evaluated. We identified the following adsorption mechanism: ion exchange with sulfate ions in the interlayer region of the NAZ samples. Finally, the chromium(VI) ions adsorbed by the NAZ samples were easily desorbed using a desorption solution. The results showed that NAZ offers great potential for the removal of chromium(VI) ions from aqueous solutions.
Collapse
|
13
|
Application of molybdenum disulfide nanosheets adsorbent for simultaneous preconcentration and determination of Cd(II), Pb(II), Zn(II) and Ni(II) in water samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02289-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Pooresmaeil M, Namazi H. Facile coating of the methotrexate-layered double hydroxide nanohybrid via carboxymethyl starch as a pH-responsive biopolymer to improve its performance for colon-specific therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Sadeghi S, Mohammadi Bijaem T. Magnetic dispersive micro-solid-phase extraction using Fe 3O 4@AC-DZ nanosorbent for the determination of Cr(VI) in water samples. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1931281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Susan Sadeghi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, Iran
| | | |
Collapse
|
16
|
Abdolmohammad-Zadeh H, Ayazi Z, Veladi M. Nickel oxide/nickel ferrite/layered double hydroxide nanocomposite as a novel magnetic adsorbent for chromium speciation. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Khoshmaram L, Mohammadi M. Combination of a smart phone based low-cost portable colorimeter with air-assisted liquid-liquid microextraction for speciation and determination of chromium (III) and (VI). Microchem J 2021. [DOI: 10.1016/j.microc.2021.105991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Burcu Kabak, Arslan Y, Trak D, Kendüzler E. Speciation, Preconcentration and Determination of Inorganic Chromium Species in Spring, Drinking, and Waste Water Samples. J WATER CHEM TECHNO+ 2021. [DOI: 10.3103/s1063455x21010082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Simultaneous extraction of chromium and cadmium from bean samples by SrFe12O19@CTAB magnetic nanoparticles and determination by ETAAS: An experimental design methodology. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Magnetic dispersive micro-solid phase extraction merged with micro-sampling flame atomic absorption spectrometry using (Zn-Al LDH)-(PTh/DBSNa)-Fe3O4 nanosorbent for effective trace determination of nickel(II) and cadmium(II) in food samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Ścigalski P, Kosobucki P. Recent Materials Developed for Dispersive Solid Phase Extraction. Molecules 2020; 25:E4869. [PMID: 33105561 PMCID: PMC7659476 DOI: 10.3390/molecules25214869] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase extraction (SPE) is an analytical procedure developed with the purpose of separating a target analyte from a complex sample matrix prior to quantitative or qualitative determination. The purpose of such treatment is twofold: elimination of matrix constituents that could interfere with the detection process or even damage analytical equipment as well as enriching the analyte in the sample so that it is readily available for detection. Dispersive solid phase extraction (dSPE) is a recent development of the standard SPE technique that is attracting growing attention due to its remarkable simplicity, short extraction time and low requirement for solvent expenditure, accompanied by high effectiveness and wide applicability. This review aims to thoroughly survey recently conducted analytical studies focusing on methods utilizing novel, interesting nanomaterials as dSPE sorbents, as well as known materials that have been only recently successfully applied in dSPE techniques, and evaluate their performance and suitability based on comparison with previously reported analytical procedures.
Collapse
Affiliation(s)
- Piotr Ścigalski
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| | | |
Collapse
|
22
|
Mohamed AA, Ismail EM, Ali S. Ultrasensitive catalytic assessment of chromium(VI) using digital imaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Derived N-doped carbon through core-shell structured metal-organic frameworks as a novel sorbent for dispersive solid phase extraction of Cr(III) and Pb(II) from water samples followed by quantitation through flame atomic absorption spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104786] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Ferreira SL, Junior JBP, Almeida LC, Santos LB, Lemos VA, Novaes CG, de Oliveira OM, Queiroz AF. Strategies for inorganic speciation analysis employing spectrometric techniques–Review. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Abo El-Reesh GY, Farghali AA, Taha M, Mahmoud RK. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Sci Rep 2020; 10:587. [PMID: 31953466 PMCID: PMC6969103 DOI: 10.1038/s41598-020-57519-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/27/2019] [Indexed: 12/07/2022] Open
Abstract
Novel modified Ni/Fe layered double hydroxides with different morphology of spherical - like shape were fabricated via using urea as a ligand and glycerol (Ni/Fe LDH/GL) with Ni:Fe molar ratios of 2:1 by the simplest co -precipitation method. Also, for comparison purposes, Ni/Fe LDH was synthesized to be used as a control one. A suggested interpretation for the morphology change was also given. The materials were characterized by X-ray diffraction (XRD), The Fourier transform infrared (FT - IR) spectroscopy, field emission scanning electron microscopy (FESEM), EDX for elemental analysis, high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett, and Teller (BET) equation, particle size distributions and Zeta potential measurements. In addition, the synthesized materials were used as adsorbents for removal of potassium dichromate from aqueous solutions under various experimental conditions. The adsorption of Cr (VI) was strongly pH dependant and the pHPZC was studied. Kinetic studies were evaluated through different models including, pseudo first and second orders, mixed 1, 2 orders, intra particle diffusion and Avrami models. For adsorption isotherms, two-parameter models (Langmuir, Freundlich and Temkin) and three parameter models (Sips, Langmuir-Freundlich and Tooth) were investigated showing maximum adsorption capacity of 50.43 mg/g and 136.05 mg/g for Ni/Fe LDH and Ni/Fe LDH/GL, respectively. Also, the effect of temperature was investigated at (23, 35, 45, 55 °C) and the thermodynamic parameters (∆H°, ∆S° and ∆G°) were calculated showing exothermic and spontaneous adsorption process. The effect of coexisting anions (Cl-, SO42- and HPO42-) and humic acid at different concentrations on the removal efficiency of dichromate ions was investigated. Chemical stability and recyclability of these adsorbents were also studied. The intermolecular hydrogen bonds formation between dichromate ion, urea, glycerol, LDH was explored by Monte Carlo simulation This study suggested that the modified Ni/Fe LDH/GL materials were promising nanoadsorbents for efficient potassium dichromate removal.
Collapse
Affiliation(s)
- Gehad Y Abo El-Reesh
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A Farghali
- Materials Science and nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Taha
- Materials Science and nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Rehab K Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
26
|
Leite VDSA, Constantino VRL, Izumi CMS, Tronto J, Pinto FG. A dispersive solid phase extraction-based method for chromium(vi) analysis using a Zn–Al layered double hydroxide intercalated with l-aspartic acid as a dissolvable adsorbent. NEW J CHEM 2020. [DOI: 10.1039/c9nj05771d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An analytical method for extraction and preconcentration of Cr(vi) in water with DSPE using a Zn–Al LDH intercalated with l-aspartic acid as a dissolvable adsorbent.
Collapse
Affiliation(s)
- Victor dos Santos Azevedo Leite
- Universidade Federal de Viçosa
- Instituto de Ciências Exatas e Tecnológicas
- Campus de Rio Paranaíba
- Rodovia BR 354 km 310
- Rio Paranaíba-MG
| | | | - Celly Mieko Shinohara Izumi
- Universidade Federal de Juiz de Fora
- Departamento de Química
- Rua José Lourenço Kelmer, s/n
- Juiz de Fora-MG
- Brazil
| | - Jairo Tronto
- Universidade Federal de Viçosa
- Instituto de Ciências Exatas e Tecnológicas
- Campus de Rio Paranaíba
- Rodovia BR 354 km 310
- Rio Paranaíba-MG
| | - Frederico Garcia Pinto
- Universidade Federal de Viçosa
- Instituto de Ciências Exatas e Tecnológicas
- Campus de Rio Paranaíba
- Rodovia BR 354 km 310
- Rio Paranaíba-MG
| |
Collapse
|
27
|
Tang S, Yao Y, Chen T, Kong D, Shen W, Lee HK. Recent advances in the application of layered double hydroxides in analytical chemistry: A review. Anal Chim Acta 2019; 1103:32-48. [PMID: 32081187 DOI: 10.1016/j.aca.2019.12.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
In recent years, layered double hydroxides (LDHs) have garnered a lot of attention in analytical chemistry, due to their advantages such as relatively simple synthesis, low cost, possession of large specific surface area and high catalytic activity, and biocompatibility. The most common applications of LDH in analytical chemistry such as sorbents in sample extraction, electrode materials in electrochemical sensing and color indicators in colorimetric detection have been well reported. Generally, the LDHs are prepared as composites with nanomaterials, or constructed with specific three-dimensional structures, befitting the applications desired for them. However, the applications of LDHs (as extraction sorbents, color indicators and in electrochemical sensing) are usually limited in these scenarios. To help address these challenges, future trends and developmental prospects of LDHs materials in analytical chemistry are discussed in this article. Besides, the strategies associated with the design of LDHs, including the structural aspects, for potential analytical applications are presented and reviewed.
Collapse
Affiliation(s)
- Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|