1
|
Oliveira MLS, Neckel A, Silva LFO, Dotto GL, Maculan LS. Environmental aspects of the depreciation of the culturally significant Wall of Cartagena de Indias - Colombia. CHEMOSPHERE 2021; 265:129119. [PMID: 33280849 DOI: 10.1016/j.chemosphere.2020.129119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/21/2023]
Abstract
Among the diverse archeological relics of the past, the Cartagena de Indias Wall is one of the greatest representations of European cultural architecture in South America. To assess the implication of contamination on the depreciation of the culturally significant Wall of Cartagena de Indias - Colombia, a detailed, multi-analytical approach was conducted on components of the wall. Accumulated ultra-fine particles (UFPs) and superficial nano-particles (NPs) containing hazardous elements (HEs) on the wall were identified in an attempt to understand whether atmospheric pollution is hastening the depreciation of the structure itself. Mortar which at one point held the stones together is now weak and has fallen away in places. Irreparable damage is being done by salt spray, acid rain and the site's tropical humid climate. Several HEs and organic compounds found within the local environment are also contributing to the gradual deterioration of the construction. In this study, advanced microscopy analyses have been applied to understand the properties of UFPs and NPs deposited onto the wall's weathered external walls through exposure to atmospheric pollution. Several materials identified by X-Ray Diffraction (XRD) can be detected using high-resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscope (FE-SEM). The presence of anglesite, gypsum, hematite containing HEs, and several organic compounds modified due to moisture and contamination was found. Black crusts located on the structure could potentially serve as a source of HEs pollution and a probable hazard to not only to the ecosystem but also to human health.
Collapse
Affiliation(s)
- Marcos L S Oliveira
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia; Faculdade Meridional, IMED, 304, Passo Fundo, RS, 99070-220, Brazil; Universidad de Lima, Departamento de Ingeniería civil y Arquitectura, Avenida Javier Prado Este 4600, Santiago de Surco, 1503, Peru
| | - Alcindo Neckel
- Faculdade Meridional, IMED, 304, Passo Fundo, RS, 99070-220, Brazil.
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Universidade Federal de Santa Maria, Chemistry Department, Avenida Roraima 1000, Santa Maria, RS, Brazil
| | | |
Collapse
|
2
|
Morillas H, Maguregui M, Gallego-Cartagena E, Marcaida I, Carral N, Madariaga JM. The influence of marine environment on the conservation state of Built Heritage: An overview study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140899. [PMID: 32721614 DOI: 10.1016/j.scitotenv.2020.140899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Marine aerosol is a chemical complex system formed by inorganic salts and organic matter, together with airborne particulate matter from the surrounding environment. The primary particles transported in the marine aerosol can experiment different chemical reactions in the atmosphere, promoting the so-called Secondary Marine Aerosol particles. These kinds of particles (nitrates, sulfates, chlorides etc.), together with the natural crustal or mineral particles and the metallic airborne particulate matter emitted by anthropogenic sources (road traffic, industry, etc.) form clusters which then can be deposited on building materials from a specific construction following dry deposition processes. Apart from that, the acid aerosols (e.g. CO2, SO2, NOX, etc.) present in urban-industrial environments, coming also from anthropogenic sources, can be deposited in the buildings following dry or a wet deposition mechanisms. The interactions of these natural and anthropogenic stressors with building materials can promote different kind of pathologies. In this overview, the negative influence of different marine environments (direct or diffuse influence), with or without the influence of an urban-industrial area (direct or diffuse), on the conservation state of historical constructions including a wide variety of building materials (sandstones, limestones, artificial stones, bricks, plasters, cementitious materials, etc.) is presented.
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain; Department of Didactic of Mathematics and Experimental Sciences, Faculty of Education and Sport, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Basque Country, Spain.
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country, Spain
| | - Euler Gallego-Cartagena
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain; Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Colombia
| | - Iker Marcaida
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Nerea Carral
- Department of Pharmacology, Faculty of Medicine, University of Basque Country UPV/EHU, 48940 Leioa, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| |
Collapse
|
3
|
Morillas H, de Mendonça Filho FF, Derluyn H, Maguregui M, Grégoire D, Madariaga JM. Decay processes in buildings close to the sea induced by marine aerosol: Salt depositions inside construction materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137687. [PMID: 32172109 DOI: 10.1016/j.scitotenv.2020.137687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Buildings close to the sea experience different kinds of decay processes related with the influence of marine aerosol. This sea spray is a chemically complex system formed by inorganic salts (sulfates, nitrates and mainly chlorides) and organic matter, together even with airborne particulate matter from the surrounding environment. Buildings close to the sea, erected using different materials such as bricks, plasters, limestones and sandstones, can experience many kinds of chemical reactions promoted by the impact of this sea spray, which favour the formation of salt crystallizations. In this work, a study of salts crystallizing in different kinds of building materials of a construction close to the Bay of Biscay (Villa Belza, Biarritz, France) has been studied in order to evaluate the state of conservation of the materials under study. The construction materials affected by salts were analyzed by means of X-ray Diffraction (XRD) and μ-Raman spectroscopy (μ-RS) for molecular analyses, Energy dispersive X-ray Fluorescence spectrometry (μ-ED-XRF) for elemental analyses and soluble salts tests by means of ion chromatography. These analyses revealed different levels of chlorides, nitrates and sulfates. Moreover, using this methodology, some specific chemical reactions that take place in the Villa Belza were understood. This knowledge can help to lay the foundations for possible future restoration works.
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain; Department of Mathematics and Experimental Sciences Didactics, Faculty of Education, Philosophy and Anthropology, University of the Basque Country UPV/EHU, II Building, Oñati Plaza 3, 20018 Donostia-San Sebastian, Basque Country, Spain.
| | | | - Hannelore Derluyn
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Total, LFCR, Anglet-Pau, France
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country, Spain
| | - David Grégoire
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Total, LFCR, Anglet-Pau, France; Institut Universitaire de France, France
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| |
Collapse
|