1
|
Juhász Á, Gombár G, Várkonyi EF, Wojnicki M, Ungor D, Csapó E. Thermodynamic Characterization of the Interaction of Biofunctionalized Gold Nanoclusters with Serum Albumin Using Two- and Three-Dimensional Methods. Int J Mol Sci 2023; 24:16760. [PMID: 38069083 PMCID: PMC10706308 DOI: 10.3390/ijms242316760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Fluorescent gold nanoclusters have been successfully used as fluorescent markers for imaging of cells and tissues, and their potential role in drug delivery monitoring is coming to the fore. In addition, the development of biosensors using structure-tunable fluorescent nanoclusters is also a prominent research field. In the case of these sensor applications, the typical goal is the selective identification of, e.g., metal ions, small molecules having neuroactive or antioxidant effects, or proteins. During these application-oriented developments, in general, there is not enough time to systematically examine the interaction between nanoclusters and relevant biomolecules/proteins from a thermodynamic viewpoint. In this way, the primary motivation of this article is to carry out a series of tests to partially fill this scientific gap. Besides the well-known fluorescent probes, the mentioned interactions were investigated using such unique measurement methods as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). These two-dimensional (at the solid/liquid interface) and three-dimensional (in the bulk phase) measuring techniques provide a unique opportunity for the thermodynamic characterization of the interaction between different gold nanoclusters containing various surface functionalizing ligands and bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Ádám Juhász
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Gyöngyi Gombár
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| | - Egon F. Várkonyi
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland;
| | - Ditta Ungor
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
| | - Edit Csapó
- Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary (E.F.V.); (D.U.)
- MTA-SZTE Lendület “Momentum” Noble Metal Nanostructures Research Group, University of Szeged, H-6720 Rerrich B. sqr. 1, 6720 Szeged, Hungary
| |
Collapse
|
2
|
Interaction of heptelidic acid with human serum albumin and colorectal cancer cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Exploring the interaction between lactoferrin and CdTe quantum dots: Energetic and molecular dynamic study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Asadishad T, Sohrabi F, Hakimi M, Ghazimoradi MH, Mahinroosta T, Hamidi SM, Farivar S. Effect of Methadone and Tramadol Opioids on Stem Cells Based on Integrated Plasmonic-Ellipsometry Technique. J Lasers Med Sci 2021; 12:e46. [PMID: 34733769 PMCID: PMC8558715 DOI: 10.34172/jlms.2021.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
Introduction: Plasmonic biosensors provide high sensitivity in detecting the low amount of biomarkers and pharmaceutical drugs. We studied the mesenchyme cell activity under the treatment of common sedative drugs of methadone and tramadol using the integrated plasmonic-ellipsometry technique. Methods: Mesenchymal stem cells were cultured on patterned plasmonic chips under the treatment of methadone and tramadol drugs. Three cultured chips were kept non-treated as the control ones. The plasmonic-ellipsometry technique was applied to study the signaling characteristic of the cells affected by these two drugs. In this technique, optical information regarding the amplitude ratio and phase change between p- and s-polarized light was recorded. Results: This drug treatment could affect the spectral plasmonic resonance and subsequently the phase shift (Δ) and the amplitude ratio (Ψ) values under p- and s-polarized impinging light. A more significant Δ value for tramadol treatment meant that the phase split was larger between p- and s-polarized light. Tramadol also had more prominent absolute Δ eff and Ψ eff values in comparison with methadone. Conclusion: We showed that tramadol caused more contrast in phase shift (Δ) and amplitude ratio (Ψ) between p- and s-polarized impinging light for cultured stem cells in comparison with methadone. It means that tramadol differentiated more the optical responses for p- and s-polarized lights compared to methadone. Our proposed technique possesses the potential of quantitative and qualitative analysis of drugs on humans even on a cell scale.
Collapse
Affiliation(s)
- Tannaz Asadishad
- Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Foozieh Sohrabi
- Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Maryam Hakimi
- Life Science and Biotechnology Faculty, Shahid Beheshti University, Tehran, Iran
| | | | - Tayebeh Mahinroosta
- Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Seyedeh Mehri Hamidi
- Magneto-plasmonic Lab, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Life Science and Biotechnology Faculty, Shahid Beheshti University, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu T, Zhang Y, Lu X, Wang P, Zhang X, Tian J, Wang Q, Song J, Jin Y, Xiao H. Binding affinity of family 4 carbohydrate binding module on cellulose films of nanocrystals and nanofibrils. Carbohydr Polym 2021; 251:116725. [PMID: 33142548 DOI: 10.1016/j.carbpol.2020.116725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/26/2022]
Abstract
The binding affinity and thermodynamics of family 4 carbohydrate-binding module (CBM4), belonging to type B CBM, on model surfaces of cellulose nanocrystals (CNC) and nanofibrils (CNF) were investigated by quartz crystal microbalance with dissipation monitoring (QCM-D) technology in real-time at different temperatures. The thermodynamic parameters associated with the interaction, such as Gibbs free energy, enthalpy change, entropy change and heat capacity were obtained using the van't Hoff analysis via a nonlinear parameter estimation. The results demonstrated CBM4 binds preferentially to both CNF and CNC, whereas the driving forces behind them were very different. The former was related to the hydrogen bonds formed in the CBM4 clefts, resulting in a favorable enthalpy but compensated by unfavorable entropy change; on the contrary, the latter was mainly driven by favorable entropy but compensated by unfavorable enthalpic change due to water rearrangement.
Collapse
Affiliation(s)
- Tian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Zhang
- Dinano Tech Co., Ltd., Nanjing Branch, Nanjing, 210046, China
| | - Xiaomin Lu
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC, 27695-8005, United States
| | - Peipei Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Jing Tian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Qingcheng Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yongcan Jin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
6
|
Hornok V, Juhász Á, Paragi G, Kovács AN, Csapó E. Thermodynamic and kinetic insights into the interaction of kynurenic acid with human serum albumin: Spectroscopic and calorimetric approaches. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Mohammadzadeh-Asl S, Jafari A, Aghanejad A, Monirinasab H, Ezzati Nazhad Dolatabadi J. Kinetic and thermodynamic studies of sunitinib malate interaction with albumin using surface plasmon resonance and molecular docking methods. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Lactoferrin-phenothiazine dye interactions: Thermodynamic and kinetic approach. Int J Biol Macromol 2019; 136:559-569. [DOI: 10.1016/j.ijbiomac.2019.06.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/13/2019] [Indexed: 01/12/2023]
|