1
|
Waleed S, Haroon M, Ullah N, Tuzen M, Rind IK, Sarı A. A comprehensive review on advanced trends in treatment technologies for removal of Bisphenol A from aquatic media. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:83. [PMID: 39707071 DOI: 10.1007/s10661-024-13460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters. Due to potential health risks, severe toxicity, and widespread distribution, there is an urgent need to develop efficient techniques for the removal of BPA. Therefore, advance management for the active elimination of BPA prior to its release into the water sources is of serious concern. Degradation, membrane separation, adsorption, and biological treatments have been extensively examined as they are easy to operate and cost-effective for effective BPA removal. In this review, we summarized the mechanism and performance for removal of BPA by several sorbents, including natural polymers, natural inorganic minerals, porous and carbon-based materials. Comparative results revealed that composite materials and modified adsorbents have good performances for removal of BPA. Furthermore, kinetic study investigating adsorption mechanisms was also discussed. Hazardous quantities of such types of chemicals in various samples have thus been the subject of increasing concern of investigation. This review clarified the extensive literature regarding the major health effects of BPA and its advanced treatment technologies including biological treatment by natural and synthetic materials have been discussed briefly. It delivers regulation for future development and research from the aspects of materials functionalization, development of methods, and mechanism investigation that directing to stimulate developments for removal of emerging contaminants.
Collapse
Affiliation(s)
- Sangeen Waleed
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Muhammad Haroon
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
| | - Naeem Ullah
- Department of Chemistry, University of Gwadar, Balochistan, 92600, Pakistan
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey
| | - Imran Khan Rind
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan.
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Ahmet Sarı
- Department of Metallurgical and Material Engineering, Karadeniz Technical University, 61080, Trabzon, Turkey
- Interdisciplinary Research Center of Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Jiang H, Yang S, Miao H, Tian H, Sun B. Ultrasonic synthesis of magnetic covalent organic frameworks and application magnetic solid phase extraction for rapid adsorption of trace bisphenols in food samples. Food Chem 2024; 440:138264. [PMID: 38150902 DOI: 10.1016/j.foodchem.2023.138264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
A simple ultrasonic synthesis strategy was developed for a novel magnetic covalent organic framework. Firstly, the Fe3O4 nanoparticles were encapsulated by imine-type COF, which generated by the Schiff reaction of 4,4',4''-(1,3,5-Triazine-2,4,6-triyl)-trianiline (TAPT) and tris(4-formylphenyl)-amine (TFPA) using ultrasonic synthesis method within 2 h. The synthesised nanocomposites showed a sizeable specific surface area, and high adsorption capacity. A fast, sensitive MSPE method with Fe3O4@TAPT-TFPA-COF as adsorbent for analysing bisphenol compounds was developed. This method's advantages were simple operation, short extraction time, and avoidance of the use of centrifugal equipment. The method validation indicate that this method exhibited superior linearity, and detection limits range between 0.33 and 0.60 μg L-1. The recoveries of BPs ranged from 74.7 % to 107.0 %, with relative standard deviations of less than 3.8 % in water, milk, vinegar, and soy sauce samples. The proposed method was successfully applied for extracting BPs in food samples.
Collapse
Affiliation(s)
- Haijuan Jiang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shaoxiang Yang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hongjian Miao
- China National Center for Food Safety Risk Assessment, Beijing 100021, PR China.
| | - Hongyu Tian
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
3
|
Bouzikri S, Ouasfi N, Khamliche L. Statistical physics modeling study of an environmentally friendly and efficient adsorbent derived from the brown macroalgae Bifurcaria bifurcata for the removal of Bisphenol A. MARINE POLLUTION BULLETIN 2024; 199:116025. [PMID: 38232650 DOI: 10.1016/j.marpolbul.2024.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
The brown macroalgae Bifurcaria bifurcata was valued and used to develop a carbonaceous material activated by H2SO4 (AC-BB@H2SO4), with the goal of assessing its adsorption ability against Bisphenol A (BPA). During the adsorption experiments, the effects of the adsorbent dose, solution pH, and contact time were examined, and the results were m = 0.4 g/L, pH = 8.3, and t = 120 min, with an elimination yield of 91.6 %. With comparatively high R2 values, the pseudo-second-order kinetic model perfectly fitted the experimental data. Langmuir's model was found to be the best appropriate for describing the adsorption equilibrium of BPA on AC-BB@H2SO4. The thermodynamic findings show that BPA adsorption on AC-BB@H2SO4 was spontaneous, favorable, and endothermic in nature. Even after six cycles of reuse, regeneration testing demonstrated that our adsorbent could eliminate BPA by >50 %. The BPA adsorption mechanism's statistical physics control parameters were determined and analyzed. BPA's adsorption energies were <40 kJ/mol, indicating that the interactions between BPA and AC-BB@H2SO4 were governed by physical forces (i.e., hydrogen bonding and van der Waals and electrostatic interactions). All of these intriguing findings indicate that our carbonaceous material might have direct ramifications in the field of wastewater treatment, notably for the clearance of BPA, which is difficult to biodegrade.
Collapse
Affiliation(s)
- Said Bouzikri
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Sciences, University Chouaïb Doukkali, 24000 El Jadida, Morocco.
| | - Nadia Ouasfi
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Sciences, University Chouaïb Doukkali, 24000 El Jadida, Morocco; Higher Institute of Nursing Professions and Health Techniques, ISPITS of Agadir, Morocco
| | - Layachi Khamliche
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Sciences, University Chouaïb Doukkali, 24000 El Jadida, Morocco
| |
Collapse
|
4
|
A V M, K A, I BM. An integrated approach to remove endocrine-disrupting chemicals bisphenol and its analogues from the aqueous environment: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1518-1546. [PMID: 37768753 PMCID: wst_2023_280 DOI: 10.2166/wst.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical (EDC) used as a plastic enhancer in producing polycarbonate resins to manufacture hard plastics. Due to strict limitations on the manufacturing and utilization of BPA, several bisphenol substitutes, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF), have been developed to replace it in various applications. Because of their widespread use in food containers, infant bottles, and reusable water bottles, bisphenols (BPs) have been identified in different environmental circumstances, including drinking water, seawater, industrial effluent, and endocrine systems such as human blood, urine, and breast milk. However, locating and analyzing them in different conditions has proven to be challenging. Therefore, there is a need to reduce the prevalence of BPs in the environment. The significance of advanced treatment options for treating and eliminating BPA and its alternatives from water bodies are reviewed. Also, the research gaps and future scopes are discussed in this review article. According to the literature survey, adsorption and photocatalytic degradation provide synergistic benefits for environmental challenges because of their substantial adsorption Q5 capacity, high oxidation capability, and low cost compared to alternative individual treatment options.
Collapse
Affiliation(s)
- Monica A V
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India E-mail:
| | - Anbalagan K
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Becky Miriyam I
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
5
|
Shishov A, Terno P, Besedovsky M, Bulatov A. Stir membrane liquid-phase microextraction based on milk fats hydrolysis and deep eutectic solvent formation: Determination of bisphenols. Food Chem 2023; 403:134408. [DOI: 10.1016/j.foodchem.2022.134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
|
6
|
Grau J, Moreno-Guzmán M, Arruza L, López MÁ, Escarpa A, Chisvert A. Analysis of microsamples by miniaturized magnetic-based pipette tip microextraction: determination of free cortisol in serum and urine from very low birth weight preterm newborns. Analyst 2023; 148:1050-1057. [PMID: 36723348 DOI: 10.1039/d2an02085h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Miniaturized magnetic-based pipette tip microextraction is presented as a sample preparation approach for microsamples. It involves quick dispersion of a diminutive amount of a magnetic sorbent material in a low-volume sample (10 μL) to entrap the target analytes. Next, the dispersion is aspirated using a (semi)automatic pipette through a pipette tip with a small cubic neodymium magnet inside, which retrieves the magnetic sorbent containing the analytes. After discarding the rest of the sample, the sorbent is properly rinsed by aspirating/dispensing deionized water, and then, the analytes are eluted by aspirating/dispensing an appropriate solvent. This approach was employed for the determination of free cortisol in serum and urine from very low birth weight preterm newborns, a vulnerable patient group who present low availability for sampling biological fluids. A magnetic immunosorbent made of a cortisol antibody was employed for the selective extraction, followed by liquid chromatography-tandem mass spectrometry. Good analytical features were obtained, such as limits of detection and quantification of 0.08 and 0.27 ng mL-1, respectively, linearity up to 50 ng mL-1 (R2 > 0.999), RSD values under 15% and relative recoveries between 91 and 111%. The cross-reactivity with other glucocorticoids (i.e., cortisone and prednisolone) was evaluated to show the selectivity of the extraction. Finally, the method applicability was demonstrated towards the determination of free cortisol in the serum and urine samples from low birth weight preterm newborns.
Collapse
Affiliation(s)
- José Grau
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100 Burjassot, Valencia, Spain.
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Luis Arruza
- Division of Neonatology, Child and Teenager Institute, Clínico San Carlos Hospital IdISCC, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802 Madrid, Spain. .,Chemical Research Institute "Andres M. Del Río", University of Alcala, Ctra. Madrid-Barcelona, Km. 33.600, Alcala de Henares, 28802 Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802 Madrid, Spain. .,Chemical Research Institute "Andres M. Del Río", University of Alcala, Ctra. Madrid-Barcelona, Km. 33.600, Alcala de Henares, 28802 Madrid, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
7
|
Naeemullah, Hazer B, Tuzen M. Development of a new solid phase microextraction method using novel imino diacetate functionalized poly (methyl methacrylate) in a Portable Syringe System for the removal of malachite green from different water system using multivariate optimization approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sobhi HR, Mohammadzadeh F, Behbahani M, Yeganeh M, Esrafili A. Application of a modified MWCNT-based d-µSPE procedure for determination of bisphenols in soft drinks. Food Chem 2022; 385:132644. [PMID: 35287103 DOI: 10.1016/j.foodchem.2022.132644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Abstract
Herein, a facile dispersive micro-solid phase extraction (d-µSPE) procedure using carboxylated multi-walled carbon nanotubes modified with silver nanoparticles (Ag/MWCNTs-COOH) was successfully developed for the adsorption and subsequent determination of low levels of two well-known contaminants, namely bisphenol A and S (BPA and BPS) in water and soft drink samples. The detection and measurement of the above-mentioned compounds were performed by HPLC-UV instrument. The applied d-µSPE procedure has several advantages such as rapidity, high degree of sensitivity, precision and efficiency. A combination of polar/non-polar interactions seems to play a key role in the adsorption process. Under the optimized conditions, the calibration curves were linear over the concentration range of 1-500 µg/L for the both targets. The practical limit of quantifications (LOQ) for the both analytes were determined to be 1.0 µg/L. The average relative recoveries obtained from the fortified samples varied between 92 and 110% with the relative standard deviations (RSD%) of 2.9-9.5%.
Collapse
Affiliation(s)
| | | | - Mohammad Behbahani
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Yeganeh
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Iran
| |
Collapse
|
9
|
Peng S, Huang X, Huang Y, Huang Y, Zheng J, Zhu F, Xu J, Ouyang G. Novel solid-phase microextraction fiber coatings: A review. J Sep Sci 2021; 45:282-304. [PMID: 34799963 DOI: 10.1002/jssc.202100634] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022]
Abstract
The materials used for the fabrication of solid-phase microextraction fiber coatings in the past five years are summarized in the current review, including carbon, metal-organic frameworks, covalent organic frameworks, aerogel, polymer, ionic liquids/poly (ionic liquids), metal oxides, and natural materials. The preparation approaches of different coatings, such as sol-gel technique, in-situ growth, electrodeposition, and glue methods, are briefly reviewed together with the evolution of the supporting substrates. In addition, the limitations of the current coatings and the future development directions of solid-phase microextraction are presented.
Collapse
Affiliation(s)
- Sheng Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoyu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yuyan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiquan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
10
|
Kubra KT, Salman MS, Hasan MN. Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115468] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Alipanahpour Dil E, Asfaram A, Javadian H. A new approach for microextraction of trace albendazole sulfoxide drug from the samples of human plasma and urine, and water by the molecularly imprinted polymer nanoparticles combined with HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1158:122249. [PMID: 33059159 DOI: 10.1016/j.jchromb.2020.122249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 01/30/2023]
Abstract
In this research study, a method of dispersive-micro-solid phase extraction (D-µ-SPE) combined with molecularly imprinted polymer nanoparticles (MIP-NPs) with HPLC-UV was developed for the fast and selective detection of the trace amount of albendazole sulfoxide (ABZSO) in the biological samples. To investigate the effective factors on ABZSO microextraction by the method, central composite design (CCD) was utilized, and the optimum conditions for ABZSO microextraction were sample pH of 8.0, MIP-mass of 15 mg, sonication time of 12 min, and eluent (methanol) volume of 0.25 mL. Under the obtained optimal extraction conditions, the value for the limit of detection (LOD) and limit of quantification (LOQ) was respectively showed to be 0.074 and 0.246 ng mL-1. In addition, the calculated peak areas exhibited a linear relationship with the ABZSO concentration ranging from 0.4 to 4200 ng mL-1. The analyses of the samples including human plasma and urine, and water were successfully performed by the usage of the D-µ-SPE method, which was a simple and sensitive technique and a suitable alternative for the analysis of ABZSO. In the analysis of ABZSO in various samples, the recoveries at various levels of ABZSO concentrations (50, 300, and 500 ng mL-1) were in the range of 95.7-103.0 %, and the relative standard deviations (RSDs; n = 3) varied from 2.2 to 4.4%.
Collapse
Affiliation(s)
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hamedreza Javadian
- Department of Chemical Engineering, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Frankowski R, Rębiś T, Werner J, Grześkowiak T, Zgoła-Grześkowiak A. Application of the electropolymerized poly(3,4-ethylenedioxythiophene) sorbent for solid-phase microextraction of bisphenols. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5068-5080. [PMID: 33034600 DOI: 10.1039/d0ay01118e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new, simple, and effective procedure using poly(3,4-ethylenedioxythiophene)/lignosulfonate electropolymerized sorbent solid-phase microextraction (PEDOT/LS-SPME) combined with LC-MS/MS for determination of bisphenols in environmental water samples was developed. Various parameters influencing the performance of the analytical procedure including the type of sorbent, electropolymerization time, sorbent preconditioning time, extraction time, desorption (time and solvent), and sample pH were investigated and optimized. Under optimal conditions the proposed method allowed us to achieve good precision (n = 5) between 6.0 and 12.1%. The limits of detection were equal to 0.17 μg L-1 for BPA, 0.16 μg L-1 for BPF, 0.07 μg L-1 for BPE, 0.05 μg L-1 for BPB, and 0.027 μg L-1 for BPAF. The proposed method was successfully applied for the determination of bisphenols in aqueous environmental samples.
Collapse
Affiliation(s)
- Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| |
Collapse
|
13
|
Huelsmann RD, Will C, Carasek E. Determination of bisphenol A: Old problem, recent creative solutions based on novel materials. J Sep Sci 2020; 44:1148-1173. [PMID: 33006433 DOI: 10.1002/jssc.202000923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
Bisphenol A is a synthetic compound widely used in industry, in the production of polycarbonate, epoxy resins, and thermal paper, among others. Its annual production is estimated at millions of tons per year, demonstrating its importance. Despite its wide application in various everyday products, once in the environment (due to its disposal or leaching), it has high toxicity to humans and animal life, and this problem has been well known for years. Given this problem, many researchers seek alternatives for its monitoring in matrices such as natural water, waste, food, and biological matrices. For this, new advanced materials have been developed, characterized, and applied in creative ways for the preparation of samples for the determination of bisphenol A. This article aims to present some of these important and recent applications, describing the use of molecularly imprinted polymers, metal and covalent organic frameworks, ionic liquids and magnetic ionic liquids, and deep eutectic solvents as creative solutions in sample preparation for the long-standing problem of bisphenol A determination.
Collapse
Affiliation(s)
| | - Camila Will
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
14
|
Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples. Mikrochim Acta 2020; 187:541. [DOI: 10.1007/s00604-020-04527-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023]
|
15
|
Wang YF, Xu Z, Xu L. High efficient removal of silver nanoparticles by coagulation with tetraethylenepentamine modified silica. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Selection of the Activated Carbon Type for the Treatment of Landfill Leachate by Fenton-Adsorption Process. Molecules 2020; 25:molecules25133023. [PMID: 32630656 PMCID: PMC7412014 DOI: 10.3390/molecules25133023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Sanitary landfill leachates usually have characteristics that depend on the region where they are generated and according to the age of the landfill, which is why a unique treatment for their sanitation has not been found. However, the adsorption preceded by the Fenton process has been proven to be highly efficient at removing contaminants. In this study, the adsorptive capacity of two types of activated carbon, granular and powdered, was analyzed to determine which was more efficient in the adsorption stage in the Fenton-adsorption process. Likewise, its behavior was analyzed using three isotherm models (Langmuir, Freundlich and Temkin), testing the raw leachate and the Fenton-treated one with both carbons. The adsorption that is carried out on the carbons is better adjusted to the Freundlich and Temkin models. It concludes that multilayers, through the physical adsorption, carry out the adsorption of pollutants on the surface of the carbons. The results show that, statistically, granular activated carbon is more efficient at removing chemical oxygen demand (COD), and powdered activated carbon removes color better. Finally, an adsorption column was designed for the Fenton-adsorption process that was able to remove 21.68 kgCOD/kg carbon. Removal efficiencies for color and COD were >99%.
Collapse
|
17
|
Needle hub in-syringe solid phase extraction based a novel functionalized biopolyamide for simultaneous green separation/preconcentration and determination of cobalt, nickel, and chromium (III) in food and environmental samples with micro sampling flame atomic absorption spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104340] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
da Silva Santos BR, Requião Silva EF, Minho LAC, Brandão GC, Pinto dos Santos AM, Carvalho dos Santos WP, Lopes Silva MV, Lopes dos Santos WN. Evaluation of the nutritional composition in effect of processing cassava leaves (Manihot esculenta) using multivariate analysis techniques. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Adsorptive removal of endocrine disrupting compounds from aqueous solutions using magnetic multi-wall carbon nanotubes modified with chitosan biopolymer based on response surface methodology: Functionalization, kinetics, and isotherms studies. Int J Biol Macromol 2019; 155:1019-1029. [PMID: 31715227 DOI: 10.1016/j.ijbiomac.2019.11.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 01/11/2023]
Abstract
Recently, the presence of endocrine disrupting compounds in the environment has emerged as a global and ubiquitous problem. In this study, a novel synthesis of magnetically carbon nanotube modified with biological polymeric was successfully prepared. The effect of different parameters on the Bisphenol A (BPA) adsorption was studied. A prediction model for BPA adsorption was extended based on the Central Composite Design. Also, the prepared biopolymeric nanotubes were characterized by FT-IR, XRD, TEM, FE-SEM. The surface morphology of nanocomposite was observed, increased carbon nano tube size, and the levels after surface deposition were completely covered by chitosan proteins. The results of our experiments showed that optimum adsorption conditions was achieved at t = 76 min, BPA concentration 6.5 mg/L, adsorbent dosage 1 g/L and pH = 6.2.The data obtained in this study followed the Langmuir isotherm model and the pseudo-second order model. The maximum monolayer adsorption capacity of nanocomposite for BPA was 46.2 mg/g at 20 °C. This study showed that the adsorption of BPA onto nanocomposite was spontaneous and thermodynamically desirable.
Collapse
|