1
|
Luján CE, Lemos AA, Oviedo MN, Llaver M, Wuilloud RG. Deep eutectic solvents as a green alternative for trace element analysis in food and beverage samples: Recent advances and challenges. Talanta 2024; 269:125451. [PMID: 38048680 DOI: 10.1016/j.talanta.2023.125451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Metals and metalloids have different effects on human health even at trace levels. Some of them are essential for living organisms while others can be toxic. Therefore, the determination of trace elements in food and beverage is highly important to understand their impact in human health. A new generation of solvents named deep eutectic solvents (DES) has emerged as a green alternative for trace element analysis, owing to their low toxicity, biodegradability, and high extraction capacity. In recent years, the application of DES in extraction techniques for trace element analysis in food and beverage samples has increased significantly. This review summarizes recent advances and challenges on the application of DES to develop microextraction techniques useful for the analysis of samples with complex matrices. The importance of the use of biodegradable substances instead of classic organic solvents, which are toxic, volatile, and flammable in methods for elemental analysis with a positive environmental impact is also highlighted. Finally, conclusions and future challenges arising from the use of DES in microextraction techniques are discussed.
Collapse
Affiliation(s)
- Cecilia E Luján
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo/Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500) Mendoza, Argentina
| | - Aldana A Lemos
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo/Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500) Mendoza, Argentina
| | - María N Oviedo
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo/Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500) Mendoza, Argentina
| | - Mauricio Llaver
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo/Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500) Mendoza, Argentina
| | - Rodolfo G Wuilloud
- Laboratorio de Química Analítica para Investigación y Desarrollo (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo/Instituto Interdisciplinario de Ciencias Básicas (ICB), CONICET UNCUYO, Padre J. Contreras 1300, (5500) Mendoza, Argentina.
| |
Collapse
|
2
|
AlYammahi J, Darwish AS, Lemaoui T, Boublia A, Benguerba Y, AlNashef IM, Banat F. Molecular Guide for Selecting Green Deep Eutectic Solvents with High Monosaccharide Solubility for Food Applications. ACS OMEGA 2023; 8:26533-26547. [PMID: 37521623 PMCID: PMC10373463 DOI: 10.1021/acsomega.3c03326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Monosaccharides play a vital role in the human diet due to their interesting biological activity and functional properties. Conventionally, sugars are extracted using volatile organic solvents (VOCs). Deep eutectic solvents (DESs) have recently emerged as a new green alternative to VOCs. Nonetheless, the selection criterion of an appropriate DES for a specific application is a very difficult task due to the designer nature of these solvents and the theoretically infinite number of combinations of their constituents and compositions. This paper presents a framework for screening a large number of DES constituents for monosaccharide extraction application using COSMO-RS. The framework employs the activity coefficients at infinite dilution (γi∞) as a measure of glucose and fructose solubility. Moreover, the toxicity analysis of the constituents is considered to ensure that selected constituents are safe to work with. Finally, the obtained viscosity predictions were used to select DESs that are not transport-limited. To provide more insights into which functional groups are responsible for more effective monosaccharide extraction, a structure-solubility analysis was carried out. Based on an analysis of 212 DES constituents, the top-performing hydrogen bond acceptors were found to be carnitine, betaine, and choline chloride, while the top-performing hydrogen bond donors were oxalic acid, ethanolamine, and citric acid. A research initiative was presented in this paper to develop robust computational frameworks for selecting optimal DESs for a given application to develop an effective DES design strategy that can aid in the development of novel processes using DESs.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmad S. Darwish
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Tarek Lemaoui
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Abir Boublia
- Laboratoire
de Physico-Chimie des Hauts Polymères (LPCHP), Département
de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Yacine Benguerba
- Laboratoire
de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif 19000, Algeria
| | - Inas M. AlNashef
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
3
|
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022). Part A: Liquid phase microextraction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Azooz EA, Tuzen M, Mortada WI, Ullah N. A critical review of selected preconcentration techniques used for selenium determination in analytical samples. Crit Rev Anal Chem 2022; 54:2072-2086. [PMID: 36480234 DOI: 10.1080/10408347.2022.2153579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selenium (Se) is considered to be an essential trace element needed for all living organisms. The importance, deficiency, and toxic effects of Se mainly depend on its quantity and chemical nature. It has been observed that the inorganic versions of Se are more hazardous than the organic versions. This review is mainly focused on the application of different extraction methods used for Se extraction and determination such as microextraction, solid-phase extraction (SPE), and their modified modes in the last 12 years. The use of different dispersive medium (magnetic field, ultrasonic radiation, and vortex agitator) to enhance Se separation is also part of this review. The usage of environmentally friendly solvents such as supramolecular solvents, hydrophobic deep eutectic solvents (DESs), and ionic liquids (ILs) are also the focus of attention in this review. This review is also emphasized the application of advanced microextraction methods, particularly liquid-phase microextraction (LPME). The most recent advances in LPME extraction techniques for Se in various environmental samples, as well as their prospects, are reviewed. Additionally, a summary of cheap, simple, and accurate techniques that have not yet been used to determine small amounts of Se has been provided.
Collapse
Affiliation(s)
- Ebaa Adnan Azooz
- Chemistry Department, The Gifted Students' School in Al-Najaf, Ministry of Education, Najaf, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mustafa Tuzen
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Naeem Ullah
- Chemistry Department, Faculty of Science and Arts, Tokat Gaziosmanpasa University, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| |
Collapse
|
5
|
Zhu X, Zhao C, Liu J, Qin F, Xiong Z, Zhao L. Determination of quinolone antibiotics in honey by pH-induced natural deep eutectic solvent combined with vortex-assisted dispersive liquid-liquid microextraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4377-4385. [PMID: 36281652 DOI: 10.1039/d2ay01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A green, fast, and efficient pH-induced natural deep eutectic solvent combined with vortex-assisted dispersive liquid-liquid microextraction method (pH-NADES-VA-DLLME) followed by HPLC was established for determination of ofloxacin (OFL), ciprofloxacin (CIP) and enrofloxacin (ENR) in honey. In this method, NaOH, as an emulsifier, can increase the contact area between the NADES and the sample solution, which can efficiently improve the extraction efficiency of the analytes. Moreover, HCl acts as the phase separation agent without centrifugation in the process, which can greatly enhance the efficiency of the sample analysis process. In addition, the main factors affecting the extraction effect were optimized by single factor experiments. Under the optimal conditions, the limits of detection (LODs), the limits of quantification (LOQs) and recoveries were in the range of 0.004-0.015 μg mL-1, 0.012-0.050 μg mL-1, and 98.0-112.5%, respectively. The RSD values of intra-day and inter-day precisions were no more than 5.5% and 6.0%, respectively. The developed method was successfully applied to determine the three quinolone antibiotics in honey.
Collapse
Affiliation(s)
- Xiaoming Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| | - Chenyang Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| | - Jun Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| | - Feng Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, P. R. China.
| |
Collapse
|
6
|
Hagarová I, Nemček L. Reliable Quantification of Ultratrace Selenium in Food, Beverages, and Water Samples by Cloud Point Extraction and Spectrometric Analysis. Nutrients 2022; 14:3530. [PMID: 36079788 PMCID: PMC9460492 DOI: 10.3390/nu14173530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Selenium is a trace element essential for the proper functioning of human body. Since it can only be obtained through our diet, knowing its concentrations in different food products is of particular importance. The measurement of selenium content in complex food matrices has traditionally been a challenge due to the very low concentrations involved. Some of the difficulties may arise from the abundance of various compounds, which are additionally present in examined material at different concentration levels. The solution to this problem is the efficient separation/preconcentration of selenium from the analyzed matrix, followed by its reliable quantification. This review offers an insight into cloud point extraction, a separation technique that is often used in conjunction with spectrometric analysis. The method allows for collecting information on selenium levels in waters of different complexity (drinking water, river and lake waters), beverages (wine, juices), and a broad range of food (cereals, legumes, fresh fruits and vegetables, tea, mushrooms, nuts, etc.).
Collapse
Affiliation(s)
- Ingrid Hagarová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | | |
Collapse
|
7
|
Song X, Luo S, Liu J, Wu Y, Huang X. Fabrication of functional group-rich monoliths for magnetic field-assisted in-tube solid phase microextraction of inorganic selenium species in water samples followed by online chromatographic determination. Analyst 2022; 147:1499-1508. [PMID: 35290422 DOI: 10.1039/d1an02097h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Efficient separation and enrichment is a crucial step in the analysis of Se(IV) and Se(VI). In the present study, for the first time, online monolith-based magnetic field-assisted in-tube solid phase microextraction (MFA/IT-SPME) was applied to capture inorganic selenium species in water samples. To this aim, porous monoliths mixed with magnetic nanoparticles were synthesized in a silica capillary and employed as a microextraction column (MEC) for MFA/IT-SPME. After that, a magnetic coil utilized to induce variable magnetic fields in adsorption and desorption steps was entwined around the MEC. Se(IV) was coordinated with o-phenylenediamine to form a coordination compound that was infused onto the MEC to be captured. Results evidenced that application of magnetic field during the extraction procedure assisted the capture of the Se(IV)-OPA complex, with an enhancement in the extraction efficiency from 83% to 97%. Under the optimized conditions, MFA/IT-SPME was online combined with HPLC equipped with a diode array detector (DAD) to perform quantification of Se(IV) and Se(VI) in environmental water samples. Total inorganic Se was quantified after pre-reduction of Se(VI) to Se(IV) prior to applying the established approach, and a subtraction method was adopted to calculate the Se(VI) and Se(IV) contents. The limit of detection for Se(IV) was as low as 0.012 μg L-1. The reliability of the suggested method was investigated by assaying Se(IV) and Se(VI) species in real-life water samples with satisfactory recoveries (81.1%-116%) and repeatability (RSDs below 9%).
Collapse
Affiliation(s)
- Xiaochong Song
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Siyu Luo
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Jun Liu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Yuanfei Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Luo S, Song X, Peng J, Huang X. Efficient entrapment of inorganic Se species in water and beer samples with functional groups-rich monolith-based adsorbent. J Sep Sci 2022; 45:1560-1569. [PMID: 35199936 DOI: 10.1002/jssc.202200034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 11/10/2022]
Abstract
An efficient multiple fibers solid phase microextraction method based on porous monolith was established for Se(IV) and Se(VI) analysis. Poly (4-vinylphenylboronic acid/styrene-co-ethylene dimethacrylate/divinylbenzene) monolith was fabricated and employed as the extraction phase for efficient entrapment of Se(IV) complexed with o-phenylenediamine, followed by elution with a methanol/FA (99/1.0, v/v) mixture and quantification by high performance liquid chromatography with diode array detector. The Se(VI) species was measured by the difference between total inorganic Se and Se(IV) after pre-reduction. Different characterization techniques were employed to inspect the structure and morphology of prepared adsorbent. A series of key extraction factors were optimized so as to achieve the expected extraction performance. Under the optimized separation and capture parameters, the linear range and limit of detection for Se(IV) in water sample were 0.050-200 μg/L and 0.013 μg/L, respectively. For beer sample, the corresponding values were 0.010-300 μg/L and 0.032 μg/L. The developed microextraction approach was successfully utilized to detect trace Se(IV) and Se(VI) in environmental water and beer samples with satisfactory fortified recovery and repeatability. Results well reveal the attractive merits of the established method in the analysis of Se species, including simple preparation of adsorbent, convenient extraction procedure, good sensitivity, high cost-effectiveness and eco-friendliness. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Siyu Luo
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaochong Song
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, P. R. China
| | - Jinghe Peng
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaojia Huang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
9
|
Sadeghi M, Saber Tehrani M, Faraji H. Vortex- assisted liquid- liquid microextraction for the trace determination of potassium bromate in flour food products. Food Chem 2022; 378:132109. [PMID: 35033707 DOI: 10.1016/j.foodchem.2022.132109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Potassium bromate, also reported as a carcinogenic agent, commonly functions to improve flour in the baking industry to increase bread volume. In this study, a green and novel preconcentration and microextraction method, termed as vortex assisted liquid-liquid microextraction combined with UV-Vis spectrophotometry was developed and utilized for trace determination of Potassium Bromate in food samples. Furthermore, various chemometric methods have been used. Under optimum conditions, the linearity range was obtained in the range between 0.02 and 2 µg/mL. Using the proposed analytical approach, the detection limits and quantitation of KBrO3 were 0.02 and 0.07 µg/mL, respectively. A pre-concentration factor of 22.2 was reported. The precision of the method was evaluated in the terms of repeatability and reproducibility and expressed by the relative standard deviation; the levels of them were considerably higher than 5.07 and 4.8%. The proposed approach was applied to the determination of trace bromate in different flour products.
Collapse
Affiliation(s)
- Mehrnoosh Sadeghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Saber Tehrani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hakim Faraji
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran; Research & Development Department, Behavand Darou-Animal Feed Supplements and Premixes Manufacturer, Alborz, Iran.
| |
Collapse
|
10
|
El-Deen AK, Shimizu K. Deep Eutectic Solvents as Promising Green Solvents in Dispersive Liquid-Liquid Microextraction Based on Solidification of Floating Organic Droplet: Recent Applications, Challenges and Future Perspectives. Molecules 2021; 26:7406. [PMID: 34885987 PMCID: PMC8659195 DOI: 10.3390/molecules26237406] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022] Open
Abstract
Deep eutectic solvents (DESs) have recently attracted attention as a promising green alternative to conventional hazardous solvents by virtue of their simple preparation, low cost, and biodegradability. Even though the application of DESs in analytical chemistry is still in its early stages, the number of publications on this topic is growing. Analytical procedures applying dispersive liquid-liquid microextraction based on the solidification of floating organic droplets (DLLME-SFOD) are among the more appealing approaches where DESs have been found to be applicable. Herein, we provide a summary of the articles that are concerned with the application of DESs in the DLLME-SFOD of target analytes from diverse samples to provide up-to-date knowledge in this area. In addition, the major variables influencing enrichment efficiency and the microextraction mechanism are fully investigated and explained. Finally, the challenges and future perspectives of applying DESs in DLLME-SFOD are thoroughly discussed and are critically analyzed.
Collapse
Affiliation(s)
- Asmaa Kamal El-Deen
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan;
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
11
|
Altunay N, Elik A, Katin K. Optimization of vortex-assisted ionic liquid dispersive liquid–liquid microextraction by experimental design prior to hydride generation atomic absorption spectrometry for determination of selenium species in food, beverage and water samples. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Zainal-Abidin MH, Hayyan M, Wong WF. Hydrophobic deep eutectic solvents: Current progress and future directions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Wu Y, Chen M, Wang X, Zhou Y, Xu M, Zhang Z. Development and validation of vortex-assisted dispersive liquid–liquid microextraction method based on solidification of floating hydrophobic deep eutectic solvent for the determination of endocrine disrupting chemicals in sewage. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Tang W, An Y, Row KH. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116187] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Heidari H, Mammostafaei C. Spectrophotometric determination of lamotrigine in plasma samples: Ultrasound-assisted emulsification-microextraction based on a hydrophobic deep eutectic solvent followed by back-extraction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119098. [PMID: 33161272 DOI: 10.1016/j.saa.2020.119098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
In this study, sensitive detection of lamotrigine in human plasma samples was realized at a low cost approach through ultrasound-assisted emulsification-microextraction based on using a hydrophobic deep eutectic solvent followed by back-extraction (USAEME-DES-BE) method. After extraction, detection and quantification of lamotrigine were done by spectrophotometry in the UV region. The hydrophobicity of the deep eutectic solvent not only eliminates the need of the third solvent as an emulsifying agent but also helps to retrieve lamotrigine from the DES by back-extraction to another aqueous phase. The back extraction process allowed the drug to be measured in the UV region. Central composite design in combination with a desirability function approach was applied for the optimization of the USAEME-DES-BE procedure. Essential factors in the method efficiency were discussed, such as back-extraction solution, time of back-extraction, the ratio of DES components, pH, the volume of DES, salt concentration, and sonication time. The method exhibited a wide dynamic linear range from 0.5 to 10 µg mL-1 and a limit of detection of 0.15 μg mL-1. The established method was successfully applied to determine lamotrigine in human plasma samples with satisfactory relative recoveries.
Collapse
Affiliation(s)
- Hassan Heidari
- Department of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | | |
Collapse
|
16
|
Jiang X, Hu J, Zhang Y, Zeng X, Long Z. Fast synthesis of bimetallic metal-organic frameworks based on dielectric barrier discharge for analytical atomic spectrometry and ratiometric fluorescent sensing. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Mostafavi B, Feizbakhsh A, Konoz E, Faraji H. Salting-out strategy for speciation of selenium in aqueous samples using centrifuge-less dispersive liquid-liquid microextraction. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:662. [PMID: 32979107 DOI: 10.1007/s10661-020-08609-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The centrifuge-less dispersive liquid-liquid microextraction (DLLME) technique was used to separate selenium species in aqueous samples. According to the salting-out effect, a simple approach was used to eliminate the centrifugation step. The optimization of the independent variables was performed using chemometric methods. Under optimal conditions, this methodology was statistically validated. The linearity was between 20 and 300 μg L-1. The limit of detection and quantification were calculated 3.4 μg L-1 and 10.4 μg L-1, respectively. The values of reproducibility and repeatability were determined ≤ 9.5% and ≤ 6.4, respectively. The possibility of the method was successfully assessed by analyzing the analytes in real samples clarified satisfactory recoveries (98.1-101.4% for Se (IV) and 98.4-101.5% for Se (VI)).
Collapse
Affiliation(s)
- Beeta Mostafavi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Niyayesh building, Imam Hassan Blv., Ashrafi-e-Esfehani Ave, Tehran, 86831-14676, Iran
| | - Alireza Feizbakhsh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Niyayesh building, Imam Hassan Blv., Ashrafi-e-Esfehani Ave, Tehran, 86831-14676, Iran.
| | - Elaheh Konoz
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Niyayesh building, Imam Hassan Blv., Ashrafi-e-Esfehani Ave, Tehran, 86831-14676, Iran
| | - Hakim Faraji
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Naghsh-e-Jahan Sq., 338177489, Pishva, Varamin, Iran.
| |
Collapse
|
18
|
Ferreira SL, Junior JBP, Almeida LC, Santos LB, Lemos VA, Novaes CG, de Oliveira OM, Queiroz AF. Strategies for inorganic speciation analysis employing spectrometric techniques–Review. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
|
20
|
Shahbodaghi M, Faraji H, Shahbaazi H, Shabani M. Sustainable and green microextraction of organophosphorus flame retardants by a novel phosphonium‐based deep eutectic solvent. J Sep Sci 2019; 43:452-461. [DOI: 10.1002/jssc.201900504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Maryam Shahbodaghi
- Department of ChemistryVaramin‐Pishva BranchIslamic Azad University Varamin Iran
| | - Hakim Faraji
- Department of ChemistryVaramin‐Pishva BranchIslamic Azad University Varamin Iran
| | - Hamidreza Shahbaazi
- Department of ChemistryVaramin‐Pishva BranchIslamic Azad University Varamin Iran
| | - Mohsen Shabani
- Department of ChemistryVaramin‐Pishva BranchIslamic Azad University Varamin Iran
| |
Collapse
|
21
|
Affiliation(s)
- Frederik A. Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Synthesis and characterization of deep eutectic solvents (five hydrophilic and three hydrophobic), and hydrophobic application for microextraction of environmental water samples. Anal Bioanal Chem 2019; 411:7489-7498. [DOI: 10.1007/s00216-019-02143-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 10/25/2022]
|