1
|
Kjidaa B, Mchich Z, Aziz K, Saffaj N, Saffaj T, Mamouni R. Flexible Synthesis of Bio-Hydroxyapatite/Chitosan Hydrogel Beads for Highly Efficient Orange G Dye Removal: Batch and Recirculating Fixed-Bed Column Study. ACS OMEGA 2024; 9:8543-8556. [PMID: 38405537 PMCID: PMC10883016 DOI: 10.1021/acsomega.3c10054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/27/2024]
Abstract
The use of fish waste as a source material for the development of functional beads has significant potential applications in the fields of materials science and environmental sustainability. In this study, a biomaterial bead of chitosan was cross-linked with bio-hydroxyapatite (Bio-Hap/Cs) through the encapsulation process to create a stable and durable material. The beads are characterized using scanning electron microscopy combined with energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and X-ray diffraction techniques. The adsorption efficiency of Bio-Hap/Cs hydrogel beads was evaluated by using Orange G (OG) dye in both batch and recirculating column systems, and the effect of various parameters on the adsorption capacity was investigated. In the batch study, it was found that OG removal increased with an increasing pH and adsorbent dose. However, in the recirculating column system, a higher bed height and lower flow rate led to increased removal of the OG dye. The kinetic study indicated that the pseudo-second-order model provided a good description of OG adsorption onto Bio-Hap/Cs beads in both batch and recirculating processes, with a high coefficient correlation. The maximum adsorbed amounts are found to be 19.944 mg g-1 and 9.472 mg g-1 in batch and recirculating processes, respectively. Therefore, Bio-Hap/Cs hydrogel beads have demonstrated an effective and reusable material for OG dye remediation from aqueous solutions using recirculating adsorption processes.
Collapse
Affiliation(s)
- Bouthayna Kjidaa
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zaineb Mchich
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Khalid Aziz
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nabil Saffaj
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Taoufiq Saffaj
- Laboratory
of Applied Organic Chemistry, Faculty of Sciences and Techniques of
Fez, University Sidi Mohamed Ben Abdellah, Fez 30000, Morocco
| | - Rachid Mamouni
- Team
of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
2
|
Ibrahim TG, Almufarij RS, Abdulkhair BY, Ramadan RS, Eltoum MS, Abd Elaziz ME. A Thorough Examination of the Solution Conditions and the Use of Carbon Nanoparticles Made from Commercial Mesquite Charcoal as a Successful Sorbent for Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091485. [PMID: 37177030 PMCID: PMC10180082 DOI: 10.3390/nano13091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Water pollution has invaded seas, rivers, and tap water worldwide. This work employed commercial Mesquite charcoal as a low-cost precursor for fabricating Mesquite carbon nanoparticles (MUCNPs) using a ball-milling process. The scanning electron energy-dispersive microscopy results for MUCNPs revealed a particle size range of 52.4-75.0 nm. The particles were composed mainly of carbon with trace amounts of aluminum, potassium, calcium, titanium, and zinc. The X-ray diffraction peaks at 26.76 and 43.28 2θ° ascribed to the (002) and (100) planes indicated a crystalized graphite phase. Furthermore, the lack of FT-IR vibrations above 3000 cm-1 showed that the MUCNPs were not functionalized. The MUCNPs' pore diameter, volume, and surface area were 114.5 Ǻ, 0.363 cm3 g-1, and 113.45 m2 g-1. The batch technique was utilized to investigate MUCNPs' effectiveness in removing chlorohexidine gluconate (CHDNG) from water, which took 90 min to achieve equilibrium and had an adsorption capacity of 65.8 mg g-1. The adsorption of CHDNG followed pseudo-second-order kinetics, with the rate-limiting step being diffusion in the liquid film. The Langmuir isotherm dominated the CHDNG adsorption on the MUCNPs with a correlation coefficient of 0.99. The thermodynamic studies revealed that CHDNG adsorption onto the MUCNPs was exothermic and favorable, and its spontaneity increased inversely with CHDNG concentration. The ball-milling-made MUCNPs demonstrated consistent efficiency through regeneration-reuse cycles.
Collapse
Affiliation(s)
- Tarig G Ibrahim
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Rasmiah S Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Babiker Y Abdulkhair
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
| | - Rasha S Ramadan
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohamed S Eltoum
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Mohamed E Abd Elaziz
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| |
Collapse
|
3
|
Khan MA, Alqadami AA, Wabaidur SM, Jeon BH. Co-Carbonized Waste Polythene/Sugarcane Bagasse Nanocomposite for Aqueous Environmental Remediation Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071193. [PMID: 37049288 PMCID: PMC10097173 DOI: 10.3390/nano13071193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/31/2023]
Abstract
The conversion of worthless municipal solid wastes to valuables is a major step towards environmental conservation and sustainability. This work successfully proposed a technique to utilize the two most commonly available municipal solid wastes viz polythene (PE) and sugarcane bagasse (SB) for water decolorization application. An SBPE composite material was developed and co-pyrolyzed under an inert atmosphere to develop the activated SBPEAC composite. Both SBPE and SBPEAC composites were characterized to analyze their morphological characteristics, specific surface area, chemical functional groups, and elemental composition. The adsorption efficacies of the composites were comparatively tested in the removal of malachite green (MG) from water. The SBPEAC composite had a specific surface area of 284.5 m2/g and a pore size of ~1.33 nm. Batch-scale experiments revealed that the SBPEAC composite performed better toward MG adsorption compared to the SBPE composite. The maximum MG uptakes at 318 K on SBPEAC and SBPE were 926.6 and 375.6 mg/g, respectively. The adsorption of MG on both composites was endothermic. The isotherm and kinetic modeling data for MG adsorption on SBPEAC was fitted to pseudo-second-order kinetic and Langmuir isotherm models, while Elovich kinetic and D-R isotherm models were better fitted for MG adsorption on SBPE. Mechanistically, the MG adsorption on both SBPE and SBPEAC composites involved electrostatic interaction, H-bonding, and π-π/n-π interactions.
Collapse
Affiliation(s)
- Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Influence of Doping-Ion-Type on the Characteristics of Al2O3-Based Nanocomposites and Their Capabilities of Removing Indigo Carmine from Water. INORGANICS 2022. [DOI: 10.3390/inorganics10090144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Globally, the continuous contamination of natural water resources is a severe issue, and looking for a solution for such a massive problem should be the researcher’s concern. Herein, Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were prepared via a simple and fast route, utilizing glucose as a capping material. All synthesis conditions were uniform to make the fabricated nanomaterials’ characteristics exclusively influenced by only the ion type. The SEM analysis showed that the particles of the synthesized Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were all less than 25 nm. The Al2O3-NiO showed the smallest particle size (11 to 14 nm) and the best BET surface area of 125.6 m2 g−1. All sorbents were tested for removing organic pollutants, as exemplified by indigo carmine (IGC) dye. The Al2O3-NiO possessed the highest adsorption capacity among the other sorbents for which it had been selected for further investigations. The IGC sorption reached equilibrium within 2.0 h, and the kinetic study revealed that the IGC removal by Al2O3-NiO nanocomposite fitted the FOM and the LFM. The sorbent showed an experimental adsorption capacity (qt) of 456.3 mg g−1 from a 200 mg L−1 IGC solution and followed the Langmuir model. The thermodynamic findings indicated an endothermic, spontaneous, and physisorption nature. The seawater and groundwater samples contaminated with 5.0 mg L−1 IGC concentrations were fully remediated using the Al2O3-NiO nanocomposite. The reuse study showed 93.3% average efficiency during four successive cycles. Consequently, prepared Al2O3-NiO nanocomposite is recommended for the treatment of contaminated water.
Collapse
|
5
|
Sonal S, Acharya S, Mishra BK. Mesoporous carbon structure impregnated with 2D engineered zirconium: A sustainable adsorbent for the removal of dyes from the aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115009. [PMID: 35421720 DOI: 10.1016/j.jenvman.2022.115009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The key designing of new breeds of the adsorbents aimed to improve the physical, chemical and textural morphology along with surface functionalization, selectivity toward the contaminants, and regenerations efficiency. In this aspect, two adsorbents named wet oxidative and ultrasonicated zirconium impregnated composite, have been synthesized through two routes, i.e., wet oxidation and ultrasonication. In wet oxidation method, carbon-based materials are oxidized using an oxidant followed by impregnation, while in ultrasonication assisted route, the impregnation is carried out using acoustic phenomenon. The characterization study revealed that the wet oxidation process is more competent in impregnating zirconium and developing diverse porosity and functionalities. The maximum adsorption capacity of wet oxidative adsorbent was 812 mg/g for Reactive Blue 19 and 203.18 mg/g for Methylene Blue, that accentuated the efficiency of the adsorbent over raw activated carbon. The electrostatic interaction, hydrogen-bonding and ligand exchange phenomenon are the involved adsorption mechanism for dyes. The regeneration study finally asserts that the wet oxidative adsorbent shows an insignificant decrease in its capacity up to the 5th-cycle (i.e., 87.67% removal at 5th cycle) as compared to raw AC (46.71% removal at 5th cycle). Further, a continuous fixed-bed column study revealed a significant correlation between experimental breakthrough data and kinetic data. Thus, the developed adsorbent has a sedulous adsorption capacity to remove the most stubborn toxic dyes and can be used in industrial-scale applications.
Collapse
Affiliation(s)
- Sonalika Sonal
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Sourav Acharya
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Brijesh Kumar Mishra
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
6
|
Spontaneous Adsorption and Efficient Photodegradation of Indigo Carmine under Visible Light by Bismuth Oxyiodide Nanoparticles Fabricated Entirely at Room Temperature. INORGANICS 2022. [DOI: 10.3390/inorganics10050065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bismuth oxyiodide (BiOI) is a targeted material for its relative safety and photocatalytic activity under visible light. In this study, a successful simple and energy-saving route was applied to prepare BiOI through a sonochemical process at room temperature. The characterization of the prepared BiOI was conducted by physical means. The transmission electron microscope (TEM) image showed that the BiOI comprises nanoparticles of about 20 nm. Also, the surface area of the BiOI was found to be 34.03 m2 g−1 with an energy gap of 1.835 eV. The adsorption and photocatalytic capacities of the BiOI were examined for the indigo carmine dye (IC) as a model water-pollutant via the batch experiment methodology. The solution parameters were optimized, including pH, contact time, IC concentration, and temperature. Worth mentioning that an adsorption capacity of 185 mg·g−1 was obtained from 100 mg L−1 IC solution at 25 °C within 60 min as an equilibrium time. In addition, the BiOI showed a high degradation efficiency towards IC under tungsten lamb (80 W), where 93% was removed within 180 min, and the complete degradation was accomplished in 240 min. The fabricated BiOI nanoparticles completely mineralized the IC under artificial visible light, as indicated by the total organic carbon analysis.
Collapse
|
7
|
Sterenzon E, Vadivel VK, Gerchman Y, Luxbacher T, Narayanan R, Mamane H. Effective Removal of Acid Dye in Synthetic and Silk Dyeing Effluent: Isotherm and Kinetic Studies. ACS OMEGA 2022; 7:118-128. [PMID: 35036683 PMCID: PMC8757339 DOI: 10.1021/acsomega.1c04111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Here, we propose a low-cost, sustainable, and viable adsorbent (pine tree-derived biochar) to remove acid dyes such as acid violet 17 (AV), which is used in the silk dyeing industry. As a case study, the AV removal process was demonstrated using synthetic effluent and further as a proof of concept using real dye effluent produced from the Sirumugai textile unit in India. The pine tree-derived biochar was selected for removal of aqueous AV dye in batch and fixed-bed column studies. The adsorbent material was characterized for crystallinity (XRD), surface area (BET), surface morphology and elemental compositions (SEM-EDX), thermal stability (TGA), weight loss (DGA), and functional groups (FTIR). Batch sorption studies were performed to evaluate (i) adsorption at various pH values (at pH 2 to 7), (ii) isotherms (at 10, 25, and 35 °C) to assess the temperature effect on the sorption efficiency, and (iii) kinetics to reveal the effect of time, adsorbent dose, and initial concentration on the reaction rate. After systematic evaluation, 2 g/L biochar, 25 mg/L AV, pH 3, 40 °C, and 40 and 360 min in a completely mixed batch study resulted in 50 and 90% dye removal, respectively. The isoelectric point at pH 3.7 ± 0.2 results in maximum dye removal, therefore suggesting that monitoring the ratio of different effluent (acid/wash/dye) can improve the colorant removal efficiency. The Langmuir isotherm best fits with the sorption of AV to biochar, provided a maximal dye uptake of 29 mg/g at 40 °C, showing that adsorption was endothermic. Fixed-bed studies were conducted at room temperature with an initial dye concentration of 25 and 50 mg/L. The glass columns were packed with biochar (bed depth 20 cm, pore volume = 14 mL) at an initial pH of 5.0 and a 10 mL/min flow rate for 120 min. Finally, the regeneration of the adsorbent was achieved using desorption studies conducted under the proposed experimental conditions resulted in 90-93% removal of AV even after five cycles of regeneration.
Collapse
Affiliation(s)
- Elizaveta Sterenzon
- School
of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vinod Kumar Vadivel
- School
of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoram Gerchman
- Department
of Biology and Environment, Faculty of Natural Science, University of Haifa and Oranim College, Tivon 3600600, Israel
| | - Thomas Luxbacher
- Anton
Paar GmbH, Anton Paar Str. 20, 8054 Graz, Austria
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, 2000 Maribor, Slovenia
| | - Ramsundram Narayanan
- Department
of Civil Engineering, Kumaraguru College
of Technology, Coimbatore, Tamil Nadu 641049, India
| | - Hadas Mamane
- School
of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Effective Removal of Malachite Green from Aqueous Solutions Using Magnetic Nanocomposite: Synthesis, Characterization, and Equilibrium Study. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/2359110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this work, magnetized activated Juniperus procera leaves (Fe3O4@AJPL) were successfully prepared via chemical activation of JPL and in situ coprecipitation with Fe3O4. A Fe3O4@AJPL nanocomposite was successfully applied for the elimination of malachite green (MG) dye from aqueous media. The prepared Fe3O4@AJPL adsorbent was characterized by SEM, EDX, TEM, XRD, FTIR, TGA, and BET surface area analyses. The BET surface area and pore size of the Fe3O4@AJPL nanocomposite were found to be 38.44 m2/g and 10.6 nm, respectively. The XRD and FTIR results indicated the formation of a Fe3O4@AJPL nanocomposite. Different parameters, such as pH of the solution (3–8), adsorbent dosage (10–100 mg), temperature (25–45°C), contact time (5-240 min), and initial MG concentrations (20–350 mg/L), for the elimination of the MG dye using Fe3O4@AJPL were optimized and found to be 7, 50 mg, 45°C, 120 min, and 150 mg/L, respectively. The nonlinear isotherm and kinetic studies exhibited a better fitting to second-order kinetic and Langmuir isotherm models, with a maximum monolayer adsorption capacity of 318.3 mg/g at 45°C, which was highly superior to the previously reported magnetic nanocomposite adsorbents. EDX analyses confirmed the presence of nitrogen on the Fe3O4@AJPL surface after MG adsorption. The calculated thermodynamic factors indicated endothermic and spontaneous processes. The desorption of MG dye from Fe3O4@AJPL was performed using a solution of 90% ethanol. Finally, it could be concluded that the designed Fe3O4@AJPL magnetic nanocomposite will be a cost-effective and promising adsorbent for the elimination of MG from aqueous media.
Collapse
|
9
|
Guo C, Wang Y, Wang F, Wang Y. Adsorption Performance of Amino Functionalized Magnetic Molecular Sieve Adsorbent for Effective Removal of Lead Ion from Aqueous Solution. NANOMATERIALS 2021; 11:nano11092353. [PMID: 34578672 PMCID: PMC8467783 DOI: 10.3390/nano11092353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023]
Abstract
Lead ion (Pb2+) has high toxicity and brings great harm to human body. It is very important to find an effective method to address lead ion pollution. In this work, amino functionalized CoFe2O4/SBA–15 nanocomposite (NH2–CoFe2O4/SBA–15) was prepared for the effective removal of Pb2+ from aqueous solution. The prepared NH2–CoFe2O4/SBA–15 adsorbent was manifested by using scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectrum (FTIR), X-ray powder diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. In the meantime, the adsorption conditions, including pH, adsorbent dosage, and adsorption time, were studied. The investigation of adsorption kinetics revealed that the adsorption results conform to the pseudo-first-order kinetic model. The adsorption isotherms research displayed that the adsorption was consistent with the Freundlich model, demonstrating that the adsorption for Pb2+ with the prepared adsorbent was a multimolecular layer adsorption process. In addition, the thermodynamic investigations (ΔG < 0, ΔH > 0, ΔS > 0) demonstrated that the adsorption for Pb2+ with the prepared adsorbent was endothermic and spontaneous. Moreover, the prepared adsorbent showed superior anti-interference performance and reusability, implying the potential application of the adsorbent in actual water treatment. Furthermore, this research may provide a reference and basis for the study of other heavy metal ions.
Collapse
Affiliation(s)
- Chuanen Guo
- Shandong University of Political Science and Law, Jinan 250014, China;
| | - Yingying Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.W.); (F.W.)
| | - Fangzheng Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.W.); (F.W.)
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.W.); (F.W.)
- Correspondence:
| |
Collapse
|
10
|
Elamin MR, Abdulkhair BY, Algethami FK, Khezami L. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Sci Rep 2021; 11:13606. [PMID: 34193935 PMCID: PMC8245496 DOI: 10.1038/s41598-021-93040-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Natural clays are considered a safe, low-cost, and sound sorbent for some pharmaceutical and body care products from water. Metformin (MF) and paracetamol (PA) are of the most consumable drugs worldwide. A portion of natural clay was treated with distilled water, and another part was treated with hydrochloric acid. The water-treated clay (WTC) and the acid-treated clay (ATC) were characterized by scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction, Fourier transforms infrared spectroscopy, and nitrogen adsorption isotherm. Batch experiments were employed to investigate the influence of contact time and solution parameters on the adsorption of PA and MF on WTC and ATC. 30 min attained the equilibrium for all sorbent-sorbate systems. Both sorbents fitted the pseudo-second-order kinetic model with a preference to the nonlinear fitting, and the mechanism of adsorption partially fitted the liquid-film diffusion model. The PA and MF adsorption on WTC and ATC fitted the Freundlich model in preference to nonlinear fitting. The adsorption of pollutants on both sorbents was spontaneous, exothermic, and physisorption in nature. Even at low concentrations, both WTC and ATC showed efficiency above 80% in removing PA and MF from tab water, groundwater, and Red seawater. These findings nominated natural clay as an alternative to the costly nanomaterials as sorbents for removing pharmaceutical contaminants from water.
Collapse
Affiliation(s)
- Mohamed R Elamin
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
- Industrial Research and Consultancy Center (IRCC), Khartoum North, Sudan
| | - Babiker Y Abdulkhair
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia.
- College of Science, Chemistry Department, Sudan University of Science and Technology (SUST), Khartoum, Sudan.
| | - Faisal K Algethami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
| | - L Khezami
- College of Science, Chemistry Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh, 11623, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Deniz F, Ersanli ET. Purification of malachite green as a model biocidal agent from aqueous system by using a natural widespread coastal biowaste ( Zostera marina). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:772-779. [PMID: 33307771 DOI: 10.1080/15226514.2020.1857684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present paper aimed to perform an environmentally friendly and effective study on the purification of biocidal material using bioremediation technique, and in this context, a natural widespread coastal biowaste (Zostera marina) was applied to remove a model biocide from aqueous system. Herein, malachite green was selected as a common agent to evaluate the biosorption efficiency of waste biomaterial. The bioremediation properties of biosorbent were studied in a controlled batch experiment system by the optimization practice of operating parameters like biosorbent quantity, medium pH, time, pollutant concentration and temperature, and kinetic, thermodynamic, equilibrium, and characterization operations. The optimum operating conditions were considered as 10 mg, 4, 6 h, 15 mg L-1, and 25 °C, respectively. Elovich and Langmuir were found to be the best-fitted models, describing the experimental biosorption data. Thermodynamic study revealed a favorable nature of the cleanup process. The characterization analysis indicated the presence of various functional groups on the layered biosorbent surface involved on the pollutant treatment. The untreated biosorbent showed a good biocide purification performance with a value of 97.584 mg g-1, and it could thus be employed as an eco-friendly and cost-effective cleaning agent in environmental bioremediation studies.
Collapse
Affiliation(s)
- Fatih Deniz
- Department of Environmental Protection Technologies, Bozova Vocational School, Harran University, Bozova, Sanliurfa, Turkey
| | - Elif Tezel Ersanli
- Department of Biology, Faculty of Arts and Science, Sinop University, Sinop, Turkey
| |
Collapse
|
12
|
Deniz F. An economical and effective alternative to commercial activated carbon for treatment of synthetic dye pollution in aquatic environment: surfactant modified waste product of Zostera marina. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:530-538. [PMID: 33052703 DOI: 10.1080/15226514.2020.1833301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a novel biosorbent material was created from the waste product of Zostera marina with the surfactant modification (Hexadecyltrimethylammonium bromide) and tried as a potential alternative to commercial (powdered) activated carbon for the treatment of synthetic dye (Fast green FCF, triarylmethane (anionic) type) pollution in aquatic environment. The treatment capability of biosorbent material was evaluated by the parameter optimization, kinetic, thermodynamic, equilibrium and characterization experiments. The optimum treatment conditions were found to be pH of 3, biosorbent amount of 10 mg, synthetic dye concentration of 15 mg L-1, temperature of 45 °C and operation time of 360 min. It was determined that Elovich model was the most suitable model among the models used to define the biosorption kinetic data. The synthetic dye treatment process was endothermic and spontaneous. Freundlich model best explained the biosorption isotherm data. The biosorbent has very heterogeneous surface with the different functional groups. The treatment capabilities of prepared biosorbent and activated carbon under the same operating conditions were calculated to be 163.075 and 110.635 mg g-1, respectively. Hereby, these experimental findings show that the synthesized eco-friendly and low-cost biosorbent can be a powerful alternative to commercial activated carbon for the purification of synthetic dye pollution in water environment.
Collapse
Affiliation(s)
- Fatih Deniz
- Department of Environmental Protection Technologies, Bozova Vocational School, Harran University, Bozova, Sanliurfa, Turkey
| |
Collapse
|
13
|
Enhanced Adsorptive Removal of β-Estradiol from Aqueous and Wastewater Samples by Magnetic Nano-Akaganeite: Adsorption Isotherms, Kinetics, and Mechanism. Processes (Basel) 2020. [DOI: 10.3390/pr8091197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A surfactant-free method was used to synthesize iron oxyhydroxide (akaganeite, β-FeOOH) nanorods and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDS), and transmission electron microscopy (TEM). The synthesized nanoadsorbent was applied for the adsorptive removal of β-estradiol from aqueous solutions. The parameters affecting the adsorption were optimized using a multivariate approach based on the Box–Behnken design with the desirability function. Under the optimum conditions, the equilibrium data were investigated using two and three parameter isotherms, such as the Langmuir, Freundlich, Dubinin–Radushkevich, Redlich–Peterson, and Sips models. The adsorption data were described as Langmuir and Sips isotherm models and the maximum adsorption capacities in Langmuir and Sips of the β-FeOOH nanorods were 97.0 and 103 mg g−1, respectively. The adjusted non-linear adsorption capacities were 102 and 104 mg g−1 for Langmuir and Sips, respectively. The kinetics data were analyzed by five different kinetic models, such as the pseudo-first order, pseudo-second order, intraparticle, as well as Boyd and Elovich models. The method was applied for the removal β-estradiol in spiked recoveries of wastewater, river, and tap water samples, and the removal efficiency ranged from 93–100%. The adsorbent could be reused up to six times after regeneration with acetonitrile without an obvious loss in the removal efficiency (%RE = 95.4 ± 1.9%). Based on the results obtained, it was concluded that the β-FeOOH nanorods proved to be suitable for the efficient removal of β-estradiol from environmental matrices.
Collapse
|
14
|
Deniz F, Bural H. Sustainable environmental remediation approach for biocide removal from water medium: a model biosorption study using activated biological waste. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:111-118. [PMID: 32723073 DOI: 10.1080/15226514.2020.1798872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Within the scope of sustainable environmental remediation approach, a biosorbent prepared from the waste of Zostera marina coastal plant with chemical activation was used to effectively remove malachite green as a common biocidal agent from water environment in this work. The biocide treatment ability of activated biosorbent was interpreted through the characterization, optimization, equilibrium, thermodynamic, and kinetic studies. The characterization research showed that the biosorbent has an uneven surface and various active groups for the retention of biocide molecules. Langmuir isotherm was found to be the most appropriate model for the experimental equilibrium data. The maximum monolayer biosorption capacity was obtained as 103.834 mg g-1 under the optimum conditions (time of 6 h, pH of 4, temperature of 25 °C, biosorbent amount of 10 mg, and biocide concentration of 15 mg L-1). The biosorption system was determined to be spontaneous and exothermic in thermodynamic aspect. The experimental kinetic data were best described by the pseudo-second-order model. All these results indicated that the activated biological residue could be used as an environmentally friendly and effective biosorbent for the biocide removal from water environment in a sustainable way.
Collapse
Affiliation(s)
- Fatih Deniz
- Department of Environmental Protection Technologies, Bozova Vocational School, Harran University, Bozova/Sanliurfa, Turkey
| | - Hatice Bural
- Department of Environmental Engineering, Graduate School of Natural and Applied Sciences, Harran University, Sanliurfa, Turkey
| |
Collapse
|
15
|
Ethylenediamine/glutaraldehyde-modified starch: A bioplatform for removal of anionic dyes from wastewater. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0328-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|