1
|
Patrick SC, Hein R, Beer PD, Davis JJ. Non-faradaic capacitive cation sensing under flow. Chem Sci 2024:d4sc05271d. [PMID: 39263657 PMCID: PMC11382808 DOI: 10.1039/d4sc05271d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
The ability to continually monitor target ion species in real-time is a highly sought-after endeavour in the field of host-guest chemistry, given its direct pertinence to medical and environmental applications. Developing methodologies which support sensitive and continuous ion sensing in aqueous media, however, remains a challenge. Herein, we present a versatile and facile, proof-of-concept electrochemical sensing methodology based on non-faradaic capacitance, which can be operated continuously with high temporal resolution (≈1.4 s), in conjunction with custom-designed integrated microfluidics. The potential of this method is demonstrated for cation sensing at a chemically simple benzo-15-crown-5-based molecular film (B15C5SAM) as a representative redox-inactive, receptive interface. Detection limits as low as 4 μM are obtained for Na+ by these entirely reagentless analyses, and are additionally characterised by exceptional baseline stabilities that are able to support continuous sensing over multiple days. The platform performs well in artificial sweat across physiologically relevant spans of sodium concentration, and provides meaningful dose-dependent responses in freshwater samples. Finally, the high assay temporal resolution affords an ability to resolve both the kinetics of binding (association/dissociation) and notably characteristic fingerprints for different alkali metals which may be diagnostic of different interfacial ion binding modes.
Collapse
Affiliation(s)
- Sophie C Patrick
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Robert Hein
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford South Parks Road Oxford OX1 3QZ UK
| |
Collapse
|
2
|
Gómez-González B, Basílio N, Vaz B, Pérez-Lorenzo M, García-Río L. Delving into the Variability of Supramolecular Affinity: Self-Ion Pairing as a Central Player in Aqueous Host-Guest Chemistry. Angew Chem Int Ed Engl 2024; 63:e202317553. [PMID: 38100517 DOI: 10.1002/anie.202317553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The determination of binding constants is a key matter in evaluating the strength of host-guest interactions. However, the profound impact of self-ion pairing on this parameter is often underrated in aqueous solution, leading in some cases to a misinterpretation of the true potential of supramolecular assemblies. In the present study, we aim to shed further light on this critical factor by exploring the concentration-dependent behavior of a multicharged pillararene in water. Our observations reveal an extraordinary 1-million-fold variability in the affinity of this macrocycle toward a given anion, showcasing the highly dynamic character of electrostatic interactions. We argue that these findings bring to the forefront the inherent determinism that underlies the estimation of affinity constants, a factor profoundly shaped by both the sensitivity of the instrumental technique in use and the intricacies of the experimental design itself. In terms of applications, these results may provide the opportunity to optimize the operational concentrations of multicharged hosts in different scenarios, aiming to achieve their maximum efficiency based on the intended application. Unlocking the potential of this hidden variability may pave the way for the creation of novel molecular materials with advanced functionalities.
Collapse
Affiliation(s)
- Borja Gómez-González
- Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Belén Vaz
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute, 36310, Vigo, Spain
| | - Moisés Pérez-Lorenzo
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute, 36310, Vigo, Spain
| | - Luis García-Río
- Department of Physical Chemistry, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Shen G, Zhong L, Liu G, Yang L, Wen X, Chen G, Zhao J, Hou C, Wang X. Synthesis of rare-earth metal-organic frameworks to construct high-resolution sensing array for multiplex anions detection, cell imaging and blood phosphorus monitoring. J Colloid Interface Sci 2023; 652:1925-1936. [PMID: 37690300 DOI: 10.1016/j.jcis.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Accurate detection and differentiation of multiple anions is still a difficult problem due to their wide variety, structural similarity, and mutual interference. Hence, four rare-earth metal-organic frameworks (RE-MOFs) including Dy-MOFs, Er-MOFs, Tb-MOFs and Y-MOFs are successfully prepared by using TCPP as the ligand and rare-earth ions as the metal center via coordination chelation. It is found that 7 anions can light up their fluorescence. Thus, a high-resolution sensing array based on RE-MOFs nanoprobes is employed to differentiate these anions from intricate analytes in real-time scenarios. The distinctive host-guest response promotes the RE-MOFs nanoprobes to selectively extract the target anions from the complex samples. By taking advantage of the cross-response between RE-MOFs nanoprobes and anions, it allows to create an array for detecting target analytes using pattern recognition. Additionally, RE-MOFs nanoprobes also facilitate the quantitative analysis of these anions (PO43-, H2PO4-, HPO42-, F-, S2-, CO32- and C2O42-). More importantly, the exceptional effectiveness of this method has been demonstrated through various successful applications, including quality monitoring of 8 toothpaste brands, intracellular phosphate imaging, and blood phosphorus detection in mice with vascular calcification. These findings provide robust evidence for the efficacy and reliability of the RE-MOFs nanoprobes array for anion recognition.
Collapse
Affiliation(s)
- Gongle Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Linling Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Guizhu Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Liu Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Guanxi Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Jiangqi Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
4
|
Wardak C, Morawska K, Pietrzak K. New Materials Used for the Development of Anion-Selective Electrodes-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5779. [PMID: 37687472 PMCID: PMC10488487 DOI: 10.3390/ma16175779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Ion-selective electrodes are a popular analytical tool useful in the analysis of cations and anions in environmental, industrial and clinical samples. This paper presents an overview of new materials used for the preparation of anion-sensitive ion-selective electrodes during the last five years. Design variants of anion-sensitive electrodes, their advantages and disadvantages as well as research methods used to assess their parameters and analytical usefulness are presented. The work is divided into chapters according to the type of ion to which the electrode is selective. Characteristics of new ionophores used as the electroactive component of ion-sensitive membranes and other materials used to achieve improvement of sensor performance (e.g., nanomaterials, composite and hybrid materials) are presented. Analytical parameters of the electrodes presented in the paper are collected in tables, which allows for easy comparison of different variants of electrodes sensitive to the same ion.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
| |
Collapse
|
5
|
KUŞ Ç, ATAŞ H, KENAR A, TAŞTEKİN M. A Simultaneous Determination Method for the Analysis of Chloride and Nitrate Ions in Air Samples by PLS1. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2023. [DOI: 10.18596/jotcsa.1124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
This study describes a multi-ion-selective electrode system for the simultaneous determination of nitrate and chloride ions in air samples by using multivariate calibration methods. The measurement system was constituted of two ion-selective electrodes, an Ag/AgCl double-junction reference electrode and a multi-potentiometer. The measurements were performed at pH 5.0 acetic acid/sodium acetate buffer. The obtained data were evaluated by using Partial Least Squares (PLS1). The system was used to analyze the synthetic samples and fume-hood samples in terms of the amount of chloride and nitrate. The percentage recovery values obtained from fume-hood samples were 93.8% ± 3.8 and 102.4% ± 2.5 for chloride and nitrate, respectively. The presented system could be an easy-to-use approach for monitoring the amount of chloride and nitrate species in the scope of occupational health and safety analysis.
Collapse
|
6
|
Reznicek J, Bednarik V, Filip J. PERCHLORATE SENSING – CAN ELECTROCHEMISTRY MEET THE SENSITIVITY OF STANDARD METHODS? Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Analysis of halogens in wastewater with a new prepared ion selective electrode. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|
9
|
Sharma R, Geranpayehvaghei M, Ejeian F, Razmjou A, Asadnia M. Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta 2021; 235:122815. [PMID: 34517671 DOI: 10.1016/j.talanta.2021.122815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Nano structured ion-selective membranes (ISMs) are very attractive materials for a wide range of sensing and ion separation applications. The present review focuses on the design principles of various ISMs; nanostructured and ionophore/ion acceptor doped ISMs, and their use in biomedical engineering. Applications of ISMs in the biomedical field have been well-known for more than half a century in potentiometric analysis of biological fluids and pharmaceutical products. However, the emergence of nanotechnology and sophisticated sensing methods assisted in miniaturising ion-selective electrodes to needle-like sensors that can be designed in the form of implantable or wearable devices (smartwatch, tattoo, sweatband, fabric patch) for health monitoring. This article provides a critical review of recent advances in miniaturization, sensing and construction of new devices over last decade (2011-2021). The designing of tunable ISM with biomimetic artificial ion channels offered intensive opportunities and innovative clinical analysis applications, including precise biosensing, controlled drug delivery and early disease diagnosis. This paper will also address the future perspective on potential applications and challenges in the widespread use of ISM for clinical use. Finally, this review details some recommendations and future directions to improve the accuracy and robustness of ISMs for biomedical applications.
Collapse
Affiliation(s)
- Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marzieh Geranpayehvaghei
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Center for Membrane Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
10
|
Patrick SC, Hein R, Beer PD, Davis JJ. Continuous and Polarization-Tuned Redox Capacitive Anion Sensing at Electroactive Interfaces. J Am Chem Soc 2021; 143:19199-19206. [PMID: 34730337 DOI: 10.1021/jacs.1c09743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous, real-time ion sensing is of great value across various environmental and medical scenarios but remains underdeveloped. Herein, we demonstrate the potential of redox capacitance spectroscopy as a sensitive and highly adaptable ion sensing methodology, exemplified by the continuous flow sensing of anions at redox-active halogen bonding ferrocenylisophthalamide self-assembled monolayers. Upon anion binding, the redox distribution of the electroactive interface, and its associated redox capacitance, are reversibly modulated, providing a simple and direct sensory readout. Importantly, the redox capacitance can be monitored at a freely chosen, constant electrode polarization, providing a facile means of tuning both the sensor analytical performance and the anion binding affinity, by up to 1 order of magnitude. In surpassing standard voltammetric methods in terms of analytical performance and adaptability, these findings pave the way for the development of highly sensitive and uniquely tunable ion sensors. More generally, this methodology also serves as a powerful and unprecedented means of simultaneously modulating and monitoring the thermodynamics and kinetics of host-guest interactions at redox-active interfaces.
Collapse
Affiliation(s)
- Sophie C Patrick
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Robert Hein
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Paul D Beer
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
11
|
Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Revsbech NP, Nielsen M, Fapyane D. Ion Selective Amperometric Biosensors for Environmental Analysis of Nitrate, Nitrite and Sulfate. SENSORS 2020; 20:s20154326. [PMID: 32756490 PMCID: PMC7435940 DOI: 10.3390/s20154326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022]
Abstract
Inorganic ions that can be redox-transformed by living cells can be sensed by biosensors, where the redox transformation gives rise to a current in a measuring circuit. Such biosensors may be based on enzymes, or they may be based on application of whole cells. In this review focus will be on biosensors for the environmentally important ions NO3−, NO2−, and SO42−, and for comparison alternative sensor-based detection will also be mentioned. The developed biosensors are generally characterized by a high degree of specificity, but unfortunately also by relatively short lifetimes. There are several investigations where biosensor measurement of NO3− and NO2− have given new insight into the functioning of nitrogen transformations in man-made and natural environments such as sediments and biofilms, but the biosensors have not become routine tools. Future modifications resulting in better long-term stability may enable such general use.
Collapse
Affiliation(s)
- Niels Peter Revsbech
- Aarhus University Centre for Water Technology, Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000 Aarhus C, Denmark;
- Correspondence: ; Tel.: +45-233-82-187
| | - Michael Nielsen
- Department of Sensor Productions, Unisense A/S, Tueager 1, 8200 Aarhus N, Denmark;
| | - Deby Fapyane
- Aarhus University Centre for Water Technology, Department of Biology, Aarhus University, Ny Munkegade 114-116, 8000 Aarhus C, Denmark;
| |
Collapse
|
13
|
Suman S, Singh R. Iodide-Selective PVC Membrane Electrode Based on Copper Complex of 2-Acetylthiophene Semicarbazone as Carrier. ANALYTICAL CHEMISTRY LETTERS 2020; 10:357-365. [DOI: 10.1080/22297928.2020.1788989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 06/15/2023]
Affiliation(s)
- Shankar Suman
- Department of Applied Chemistry, Delhi Technological University, Delhi-10042, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, Delhi-10042, India
| |
Collapse
|
14
|
Martín Várguez P, Brunel F, Raimundo JM. Recent Electrochemical/Electrical Microfabricated Sensor Devices for Ionic and Polyionic Analytes. ACS OMEGA 2020; 5:4733-4742. [PMID: 32201758 PMCID: PMC7081253 DOI: 10.1021/acsomega.9b04331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/12/2020] [Indexed: 05/06/2023]
Abstract
The recent technological advances combined with the development of new concepts and strategies have revolutionized the field of sensor devices, allowing access to increasingly sophisticated device structures associated with high sensitivities and selectivities. Among them, electrochemical and electrical sensors have gained the most interest because they offer unique intrinsic characteristics and meet the requirements to be integrated in more sophisticated devices including microfluidics or lab-on-chips, opening access to multiplex and all-in-one detection devices. In the present article, we outline and provide a short and concise overview on the most recent achievements in the field of electrical detection of ionic species as they display versatile roles in many important biological events and are ubiquitous in environment.
Collapse
|
15
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|