1
|
Kim SH, Baek JW, Eun HR, Lee YJ, Kim SM, Jeong MJ, Lee YH, Noh HH, Shin Y. Optimization of Ferimzone and Tricyclazole Analysis in Rice Straw Using QuEChERS Method and Its Application in UAV-Sprayed Residue Study. Foods 2024; 13:3517. [PMID: 39517301 PMCID: PMC11545821 DOI: 10.3390/foods13213517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Rice straw is used as livestock feed and compost. Ferimzone and tricyclazole, common fungicides for rice blast control, can be found in high concentrations in rice straw after unmanned aerial vehicle (UAV) spraying, potentially affecting livestock and human health through pesticide residues. In this study, an optimized method for the analysis of the two fungicides in rice straw was developed using the improved QuEChERS method. After the optimization of water and solvent volume, extraction conditions including ethyl acetate (EtOAc), acetonitrile (MeCN), a mixed solvent, and MeCN containing 1% acetic acid were compared. Different salts, including unbuffered sodium chloride, citrate, and acetate buffer salts, were compared for partitioning. Among the preparation methods, the MeCN/EtOAc mixture with unbuffered salts showed the highest recovery rates (88.1-97.9%, RSD ≤ 5.1%). To address the severe matrix effect (%ME) of rice straw, which is characterized by low moisture content and cellulose-based complex matrices, samples were purified using 25 mg each of primary-secondary amine (PSA) and octadecylsilane (C18), without pesticide loss. The developed method was validated with a limit of quantification (LOQ) of 0.005 mg/kg for target pesticides, and recovery rates at levels of 0.01, 0.1, and 2 mg/kg met the permissible range (82.3-98.9%, RSD ≤ 8.3%). The %ME ranged from -17.6% to -0.3%, indicating a negligible effect. This optimized method was subsequently applied to residue studies following multi-rotor spraying. Fungicides from all fields and treatment groups during harvest season did not exceed the maximum residue limits (MRLs) for livestock feed. This confirms that UAV spraying can be safely managed without causing excessive residues.
Collapse
Affiliation(s)
- So-Hee Kim
- Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea;
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Jae-Woon Baek
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hye-Ran Eun
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Ye-Jin Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Su-Min Kim
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Mun-Ju Jeong
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Yoon-Hee Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| | - Hyun Ho Noh
- Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea;
| | - Yongho Shin
- Department of Applied Bioscience, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
2
|
Sun H, Wang S, Liu C, Hu WK, Liu JW, Zheng LJ, Gao MY, Guo FR, Qiao ST, Liu JL, Sun B, Gao CF, Wu SF. Risk assessment, fitness cost, cross-resistance, and mechanism of tetraniliprole resistance in the rice stem borer, Chilo suppressalis. INSECT SCIENCE 2024; 31:835-846. [PMID: 37846895 DOI: 10.1111/1744-7917.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30). The realized heritability (h2) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50 = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7-806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.
Collapse
Affiliation(s)
- Hao Sun
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shuai Wang
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Chong Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Wen-Kai Hu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jin-Wei Liu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Ling-Jun Zheng
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Meng-Yue Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Fang-Rui Guo
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Song-Tao Qiao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Jun-Li Liu
- Bayer Cropscience (China) Co., Ltd., Hangzhou, China
| | - Bo Sun
- Bayer Cropscience (China) Co., Ltd., Hangzhou, China
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, China
| |
Collapse
|
3
|
Wang A, Zhang Y, Liu S, Xue C, Zhao Y, Zhao M, Yang Y, Zhang J. Molecular mechanisms of cytochrome P450-mediated detoxification of tetraniliprole, spinetoram, and emamectin benzoate in the fall armyworm, Spodoptera frugiperda (J.E. Smith). BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-13. [PMID: 38563228 DOI: 10.1017/s000748532300038x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a highly damaging invasive omnivorous pest that has developed varying degrees of resistance to commonly used insecticides. To investigate the molecular mechanisms of tolerance to tetraniliprole, spinetoram, and emamectin benzoate, the enzyme activity, synergistic effect, and RNA interference were implemented in S. frugiperda. The functions of cytochrome P450 monooxygenase (P450) in the tolerance to tetraniliprole, spinetoram, and emamectin benzoate in S. frugiperda was determined by analysing changes in detoxification metabolic enzyme activity and the effects of enzyme inhibitors on susceptibility to the three insecticides. 102 P450 genes were screened via transcriptome and genome, of which 67 P450 genes were differentially expressed in response to tetraniliprole, spinetoram, and emamectin benzoate and validated by quantitative real-time PCR. The expression patterns of CYP9A75, CYP340AA4, CYP340AX8v2, CYP340L16, CYP341B15v2, and CYP341B17v2 were analysed in different tissues and at different developmental stages in S. frugiperda. Silencing CYP340L16 significantly increased the susceptibility of S. frugiperda to tetraniliprole, spinetoram, and emamectin benzoate. Furthermore, knockdown of CYP340AX8v2, CYP9A75, and CYP341B17v2 significantly increased the sensitivity of S. frugiperda to tetraniliprole. Knockdown of CYP340AX8v2 and CYP340AA4 significantly increased mortality of S. frugiperda to spinetoram. Knockdown of CYP9A75 and CYP341B15v2 significantly increased the susceptibility of S. frugiperda to emamectin benzoate. These results may help to elucidate the mechanisms of tolerance to tetraniliprole, spinetoram and emamectin benzoate in S. frugiperda.
Collapse
Affiliation(s)
- Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Shaofang Liu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongxin Zhao
- Shandong Province Yuncheng County Agricultural and Rural Bureau, Yuncheng, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, China
| |
Collapse
|
4
|
Nie X, Xie G, Huo Z, Zhang B, Lu H, Huang Y, Li X, Dai L, Huang S, Yu A. Optimization and Application of the QuEChERS-UHPLC-QTOF-MS Method for the Determination of Broflanilide Residues in Agricultural Soils. Molecules 2024; 29:1428. [PMID: 38611708 PMCID: PMC11012774 DOI: 10.3390/molecules29071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, the separation conditions of UHPLC-QTOF-MS and the extraction conditions of QuEChERS were optimized. The analytical process for determining Broflanilide residues in different soil types was successfully established and applied to its adsorption, desorption, and leaching in soil. Broflanilide was extracted from soil with acetonitrile and purified using PSA and MgSO4. The modified UHPLC-QTOF-MS method was used for quantification. The average recovery of Broflanilide was between 87.7% and 94.38%, with the RSD lower than 7.6%. In the analysis of adsorption, desorption, and leaching quantities in four soil types, the RSD was less than 9.2%, showing good stability of the method, which can be applied to determine the residue of Broflanilide in different soils.
Collapse
Affiliation(s)
- Xiaoli Nie
- Changsha General Survey of Natural Resources Centre, China Geological Survey, No. 258 Xuefu Road, Suburban Street, Changsha 410000, China; (X.N.); (Z.H.); (X.L.); (L.D.)
| | - Guai Xie
- Jiangxi Academy of Forestry, No. 1629 West Fenglin Road, Economic and Technological Development Area, Nanchang 330000, China; (G.X.); (B.Z.); (S.H.)
| | - Zhitao Huo
- Changsha General Survey of Natural Resources Centre, China Geological Survey, No. 258 Xuefu Road, Suburban Street, Changsha 410000, China; (X.N.); (Z.H.); (X.L.); (L.D.)
| | - Baoyu Zhang
- Jiangxi Academy of Forestry, No. 1629 West Fenglin Road, Economic and Technological Development Area, Nanchang 330000, China; (G.X.); (B.Z.); (S.H.)
| | - Haifei Lu
- College of Urban Construction, Zhejiang Shuren University, No. 8 Shuren Road, Gongshu District, Hangzhou 310015, China
| | - Yi Huang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, No. 1688 Meiling Road, Xinjian District, Nanchang 330000, China
| | - Xin Li
- Changsha General Survey of Natural Resources Centre, China Geological Survey, No. 258 Xuefu Road, Suburban Street, Changsha 410000, China; (X.N.); (Z.H.); (X.L.); (L.D.)
| | - Liangliang Dai
- Changsha General Survey of Natural Resources Centre, China Geological Survey, No. 258 Xuefu Road, Suburban Street, Changsha 410000, China; (X.N.); (Z.H.); (X.L.); (L.D.)
| | - Siyuan Huang
- Jiangxi Academy of Forestry, No. 1629 West Fenglin Road, Economic and Technological Development Area, Nanchang 330000, China; (G.X.); (B.Z.); (S.H.)
| | - Ailin Yu
- Jiangxi Academy of Forestry, No. 1629 West Fenglin Road, Economic and Technological Development Area, Nanchang 330000, China; (G.X.); (B.Z.); (S.H.)
| |
Collapse
|
5
|
Zhang Y, Wang A, Yu L, Yang Y, Duan A, Xue C, Zhao M, Zhang J. Systematic identification and characterization of differentially expressed microRNAs under tetraniliprole exposure in the fall armyworm, Spodoptera frugiperda. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21875. [PMID: 35167157 DOI: 10.1002/arch.21875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The fall armyworm, Spodoptera frugiperda, is a worldwide agricultural pest and causes huge losses of crop production each year. Tetraniliprole is a novel diamide insecticide with high efficacy against even the insecticide resistant pests of Lepidoptera, Coleoptera, and Diptera. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level and play an important regulatory role in the insecticide resistance in insects. However, the effects of miRNAs on the tetraniliprole tolerance in S. frugiperda are poorly understood. In the present research, the miRNAs response to tetraniliprole application in S. frugiperda were systematically investigated by high-throughput sequencing. A total of thirty differentially expressed miRNAs were identified under tetraniliprole treatment in S. frugiperda. The functions of the target genes of these differentially expressed miRNAs were further predicted by Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes database pathway, and the most significantly enriched pathway was MAPK signaling pathway. The expression changes of six differentially expressed miRNAs were validated by quantitative real-time polymerase chain reaction. Furthermore, miR-278-5p had the highest expression in the hemolymph and malpighian tubule and the lowest expression in the gut. Oversupply of miR-278-5p significantly increased the mortality of S. frugiperda following exposure to tetraniliprole. These results will provide the basis for understanding the regulatory roles of miRNAs regarding to tetraniliprole tolerance in S. frugiperda.
Collapse
Affiliation(s)
- Yun Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lang Yu
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuanxue Yang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ailing Duan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Xue
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
6
|
Huang C, Zhou W, Bian C, Wang L, Li Y, Li B. Degradation and Pathways of Carvone in Soil and Water. Molecules 2022; 27:molecules27082415. [PMID: 35458614 PMCID: PMC9027270 DOI: 10.3390/molecules27082415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Carvone is a monoterpene compound that has been widely used as a pesticide for more than 10 years. However, little is known regarding the fate of carvone, or its degradation products, in the environment. We used GC-MS (gas chromatography–mass spectrometry) to study the fate of carvone and its degradation and photolysis products under different soil and light conditions. We identified and quantified three degradation products of carvone in soil and water samples: dihydrocarvone, dihydrocarveol, and carvone camphor. In soil, dihydrocarveol was produced at very low levels (≤0.067 mg/kg), while dihydrocarvone was produced at much higher levels (≤2.07 mg/kg). In water exposed to differing light conditions, carvone was degraded to carvone camphor. The photolysis rate of carvone camphor under a mercury lamp was faster, but its persistence was lower than under a xenon lamp. The results of this study provide fundamental data to better understand the fate and degradation of carvone and its metabolites in the environment.
Collapse
Affiliation(s)
- Chenyu Huang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; (C.H.); (C.B.); (L.W.)
| | - Wenwen Zhou
- College of Food Sciences, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Chuanfei Bian
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; (C.H.); (C.B.); (L.W.)
| | - Long Wang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; (C.H.); (C.B.); (L.W.)
| | - Yuqi Li
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Baotong Li
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; (C.H.); (C.B.); (L.W.)
- Correspondence: ; Tel.: +86-15179409965
| |
Collapse
|
7
|
Bian C, Gao M, Liu L, Zhou W, Li Y, Wan C, Li B. Determination of Pydiflumetofen Residues in Rice and its Environment by an Optimized QuEChERS Method Coupled with HPLC-MS. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:239-247. [PMID: 34100970 DOI: 10.1007/s00128-021-03282-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Pydiflumetofen is a new succinate dehydrogenase inhibitor fungicide, and the method for determination of its residues in rice and associated environmental samples has not yet been reported. Here, we optimized, Quick Easy, Cheap, Effective, Rugged, Safe (QuEChERS) method for sample preparation, and used high performance liquid chromatography-tandem mass spectrometry (HPLC-MS) to detect the residual amounts of pydiflumetofen in rice and its environment. The results showed that there was a good linearity over the pydiflumetofen concentration range of 0.01-0.1 mg/L in all matrices (R2 > 0.99). At the spiked levels of 0.01, 0.05, and 0.1 mg/kg, the recovery rates of pydiflumetofen from various matrices were between 84.23 and 105.10 %, with the relative standard deviation of 1.07-9.99 %. The limit of detection (signal-to-noise ratio = 3) of the proposed method for pydiflumetofen was in the range of 1.9-3.5 µg/kg, and the limit of quantification (signal-to-noise ratio = 10) was in the range of 6.3-11.7 µg/kg.
Collapse
Affiliation(s)
- Chuanfei Bian
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meizhu Gao
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lang Liu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenwen Zhou
- School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuqi Li
- School of Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chengrui Wan
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Baotong Li
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
- College of Land Resources and Environment, Jiangxi Agricultural University, 1225 Zhimin Road, Nanchang, 330045, China.
| |
Collapse
|
8
|
Ma D, Yang S, Jiang J, Zhu J, Li B, Mu W, Dou D, Liu F. Toxicity, residue and risk assessment of tetraniliprole in soil-earthworm microcosms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112061. [PMID: 33636466 DOI: 10.1016/j.ecoenv.2021.112061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Maize seed treatment with chemicals to control underground pests is a common agricultural practice, but inappropriate use of insecticides poses a considerable threat to plant development and soil nontarget organisms. In this study, the availability of tetraniliprole seed dressing to control the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae) in the maize seeding stage and its safety to earthworms (Eisenia fetida) were investigated. The selective toxicity (ST) of tetraniliprole between E. fetida and A. ipsilon was greater than 4000. No significant adverse effect of tetraniliprole seed treatment on the germination of maize seeds was observed at concentrations of 2.4-9.6 g a.i. /kg seed. Compared with the untreated control, seed treatment with tetraniliprole at 9.6 g a.i. /kg seed greatly reduced the percentage of damaged plants from 88.73% to 26.67%, and achieved the highest control effect of 69.91%. Tetraniliprole of 2.4 g a.i. /kg seed can effectively inhibit A. ipsilon until 14 days after seed germination, with the lowest mortality rate of 44.44%. During the entire exposure period, the maximum residual concentration of tetraniliprole detected in the soil (5.86 mg/kg) was considerably lower than the LC50 value of tetraniliprole to E. fetida (>4000 mg/kg). According to the low-tier risk assessment, the highest risk quotient (RQ) of tetraniliprole seed treatment to earthworms at test concentrations was 2.8 × 10-3, which was evaluated as acceptable. This study provided data support for tetraniliprole seed treatment to control underground pests in maize fields.
Collapse
Affiliation(s)
- Dicheng Ma
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Song Yang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Jiangong Jiang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Jiamei Zhu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, People's Republic of China.
| |
Collapse
|
9
|
Advancements in the preparation and application of monolithic silica columns for efficient separation in liquid chromatography. Talanta 2021; 224:121777. [PMID: 33379011 DOI: 10.1016/j.talanta.2020.121777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
Fast and efficient separation remains a big challenge in high performance liquid chromatography (HPLC). The need for higher efficiency and resolution in separation is constantly in demand. To achieve that, columns developed are rapidly moving towards having smaller particle sizes and internal diameters (i.d.). However, these parameters will lead to high back-pressure in the system and will burden the pumps of the HPLC instrument. To address this limitation, monolithic columns, especially silica-based monolithic columns have been introduced. These columns are being widely investigated for fast and efficient separation of a wide range of molecules. The present article describes the current methods developed to enhance the column efficiency of particle packed columns and how silica monolithic columns can act as an alternative in overcoming the low permeability of particle packed columns. The fundamental processes behind the fabrication of the monolith including the starting materials and the silica sol-gel process will be discussed. Different monolith derivatization and end-capping processes will be further elaborated and followed by highlights of the performance such monolithic columns in key applications in different fields with various types of matrices.
Collapse
|
10
|
Residues Analysis and Dissipation Dynamics of Broflanilide in Rice and Its Related Environmental Samples. Int J Anal Chem 2021; 2020:8845387. [PMID: 33381186 PMCID: PMC7755498 DOI: 10.1155/2020/8845387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Herein, we present a method for the quantitative analysis of broflanilide residues in water, soil, and rice samples from a paddy field in Jiangxi Province, China. The quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was optimized for the extraction and purification of broflanilide residues. Residual broflanilide concentrations in different matrices were then determined by high-performance liquid chromatography (HPLC). The calibration curve of broflanilide showed good linearity in all matrices for concentrations between 0.005 and 1 mg·L−1, with a correlation coefficient greater than 0.99. The matrix effect varied from −69% to −54%, indicating matrix suppression. The average recoveries ranged between 85.82% and 97.46%, with relative standard deviations of 3.29%–8.15%. The limits of detection ranged from 0.16 to 1.67 μg·kg−1, and the limits of quantification were in the range of 0.54 to 5.48 μg·kg−1. Dissipation dynamic tests indicated broflanilide half-lives of 0.46–2.46, 2.09–5.34, and 1.31–3.32 days in soil, water, and rice straw, respectively. Broflanilide was dissipated more rapidly in water than in soil and rice straw. More than 90% of broflanilide residues dissipated within 14 days. The final residues of broflanilide in rice were all below LOQ at harvest.
Collapse
|
11
|
Detection of Glyamifop residues in rice and its environment by the QuEChERS method combined with HPLC–MS. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: A mini-review. Food Chem 2020; 339:128084. [PMID: 33152875 DOI: 10.1016/j.foodchem.2020.128084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Toxic small molecule contaminants (SMCs) residues in food threaten human health. Immunoassays are popular and simple techniques for SMCs analysis. However, immunoassays based on polyclonal antibodies, monoclonal antibodies and chemosynthetic antigens have some defects, such as complicated preparation of antibodies, risk of toxic haptens using for antigen chemosynthesis and so on. Phage-display technique has been proven to be an attractive alternative approach to producing antibody and antigen substitutes of SMCs, and opened up new realms for developing immunoassays of SMCs. These substitutes contain five types, including anti-idiotypic recombinant antibody (AIdA), anti-immune complex peptide (AIcP), anti-immune complex recombinant antibody (AIcA) and anti-SMC recombinant antibody (anti-SMC RAb). In this review, the principle of immunoassays based on the five types of substitutes, as well as their application and advantages are summarized and discussed.
Collapse
|