S K, Illanad G, Saket S, Ghosh C. Recent advances in solid phase microextraction with various geometries in environmental analysis.
RSC Adv 2024;
14:27608-27621. [PMID:
39221126 PMCID:
PMC11363066 DOI:
10.1039/d4ra03251a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Solid phase microextraction (SPME) has emerged as a versatile sample preparation technique for the preconcentration of a broad range of compounds with various polarities, especially in environmental studies. SPME has demonstrated its eco-friendly credentials, significantly reducing the reliance on solvents. The use of biocompatible materials as a coating recipe facilitates the acceptance of SPME devices in analytical chemistry, primarily in the monitoring of environmental pollutants such as persistent organic pollutants (POPs), volatile organic compounds (VOCs), and pesticides from the various environmental matrices. During the last few years, investigators have reported an improvement in the SPME enrichment technique after changing the coating recipe, geometries, and sampling procedure from the complex matrices. Furthermore, the development of various geometries of SPME with large surface areas has enhanced the extraction efficiency of environmental pollutants. As a miniaturized sample preparation technique, SPME significantly reduces the solvent usage, suggesting a potential platform for green chemistry-based research for water, air, and soil analysis. This review article summarizes the evolution of SPME, its various modes, the application of SPME, recent innovations, and prospects for the determination of water, air, and soil pollution. The advantages and disadvantages of SPME in comparison to other extraction techniques have been discussed here. This review serves as a valuable resource for investigators working in sustainable environmental research.
Collapse