1
|
Ganorkar SB, Hadole PM, Patil MR, Pardeshi CV, Bobade PS, Shirkhedkar AA, Heyden YV. Deep eutectic solvents in analysis, delivery and chemistry of pharmaceuticals. Int J Pharm 2025:125278. [PMID: 39875037 DOI: 10.1016/j.ijpharm.2025.125278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
Deep eutectic solvents (DES) have an emerging scientific role, assisting modern pharmaceutics. They are uniquely supporting the resolution of crucial issues, such as the effective extraction and isolation of bio-actives. They act as media and catalysts for pharmaceutical drug synthesis, and as green solvents and modifiers in pharmaceutical analysis. Their role in pharmaceutical formulation and drug delivery is also up-and-coming, for instance, as alternative drug-solubilizing agents, drug stabilizers and functional additives, as therapeutic deep eutectic solvents, deep eutectic API, and monomers and reaction media for the synthesis of biomaterials for advanced drug delivery. The DES also help transforming medicinal/pharmaceutical chemistry. Although DES were described in 1918, their first pharmaceutical use is only reported in 1960. In view of their broad applicability in pharmaceutics, it may be interesting to review their history, origin, evolution, potential advantages, limitations, and specific applications as green solvents. A chronological and comparative study of the literature showed the important role of DES in green approaches for modern pharmaceuticals. The concepts, applications, and outcomes of DES in pharmaceutical analysis, formulation/drug delivery, and pharmaceutical/medicinal chemistry are presented. A comprehensive outline of the atypical applications of DES as effective green solvents in pharmaceutical bioactive extraction was assessed. Efforts to present classifications of DES explored in pharmaceuticals were also made. The present manuscript also covers computational trend, adds on commercial aspects with potential future applications of DES in pharmaceutical sciences.
Collapse
Affiliation(s)
- Saurabh B Ganorkar
- Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India.
| | - Pranay M Hadole
- Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India
| | - Mangesh R Patil
- Tevapharm India Private Limited, Seawoods Grand Central, Seawoods (W), Navi Mumbai 400706 India
| | - Chandrakantsing V Pardeshi
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India
| | - Preeti S Bobade
- Department of Pharmaceutical Quality Assurance and Industrial Pharmacy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India
| | - Atul Awe Shirkhedkar
- Department of Pharmaceutical Chemistry and Analysis, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405 India
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussels (VUB), Laarbeeklaan 103, Brussels 1090 Belgium.
| |
Collapse
|
2
|
Xu Z, Wang Z, Jianping D, Muhsen S, Almujibah H, Abdullah N, Elattar S, Khadimallah MA, Marzouki R, Assilzadeh H. Utilizing nanotechnology to boost the reliability and determine the vertical load capacity of pile assemblies. ENVIRONMENTAL RESEARCH 2024; 251:118457. [PMID: 38382666 DOI: 10.1016/j.envres.2024.118457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Because of their high electrocatalytic activity, sensitivity, selectivity, and long-term stability in electrochemical sensors and biosensors, numerous nanomaterials are being used as suitable electrode materials thanks to developments in nanotechnology. Electrochemical sensors and biosensors are two areas where two-dimensional layered materials (2DLMs) are finding increasing utility due to their unusual structure and physicochemical features. Nanosensors, by their unprecedented sensitivity and minute scale, can probe deeper into the structural integrity of piles, capturing intricacies that traditional tools overlook. These advanced devices detect anomalies, voids, and minute defects in the pile structure with unparalleled granularity. Their effectiveness lies in detection and their capacity to provide real-time feedback on pile health, heralding a shift from reactive to proactive maintenance methodologies. Harvesting data from these nanosensors, data was incorporated into a probabilistic model, executing the reliability index calculations through Monte Carlo simulations. Preliminary outcomes show a commendable enhancement in the predictability of vertical bearing capacity, with the coefficient of variation dwindling by up to 12%. The introduction of nanosensors facilitates instantaneous monitoring and fortifies the long-term stability of pile foundations. This study accentuates the transformative potential of nanosensors in geotechnical engineering.
Collapse
Affiliation(s)
- Zhijun Xu
- School of Civil Engineering, Henan University of Technology, Zhengzhou, China.
| | - Zhengquan Wang
- School of Civil Engineering, Henan University of Technology, Zhengzhou, China
| | - Du Jianping
- School of Civil Engineering, Henan University of Technology, Zhengzhou, China
| | - Sami Muhsen
- Air conditioning and Refrigeration Techniques Engineering Department, College of Engineering and technologies, Al-Mustaqbal University, 51001, Hillah, Babylon, Iraq.
| | - Hamad Almujibah
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif City, 21974, Saudi Arabia
| | - Nermeen Abdullah
- Department of Industrial & Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samia Elattar
- Department of Industrial & Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed Amine Khadimallah
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Riadh Marzouki
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Hamid Assilzadeh
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| |
Collapse
|
3
|
Ganesh PS, Eluwale Elugoke S, Kim SY, Kaya S, Ebenso EE. Role of electron transfer between bare electrode and benzoguanamine to fabricate an electrochemical sensor for drugs: Theoretical and electrochemical approach. Microchem J 2024; 201:110731. [DOI: 10.1016/j.microc.2024.110731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
4
|
Muche F, Ezez D, Guadie A, Tefera M. Metal distribution and human health risk assessment in legumes crops (chickpea, lentils and peas) from Belesa districts, Ethiopia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1592-1601. [PMID: 37364006 DOI: 10.1080/09603123.2023.2229771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Accumulation of heavy metals in food is a major concern for humans' health. This study was aimed at determining the levels of Cu, Fe, Mn, Ni and Zn in chickpea, lentil and pea samples and evaluating the health risk for consumers. The concentrations (in mg/kg) of Cu, Fe, Mn, Zn, and Ni were varied from 23.6-48, 67.7-132.3, 15-26.5, 37.6-68.2, and 25.5-33.3 in chickpea, 39.8-80.5, 116.1-180.5, 12.1-21.6, 36.4-57.2, and 25.4-34.1 for lentil and 32-64.2, 51.6-100.0, 6.3-15, 25.3-42.5, and 25.5-48.5 for peas, respectively. Pearson correlation verified that strong positive correlations were observed between Cu and Zn in lentils, Ni and Mn, Fe with Cu and Mn in peas. Target hazard quotients (THQ) except Ni in all samples, Cu in lentil and pea were < 1 and the hazard index (HI) values of all heavy metals were greater than 1, thus an appropriate strategy is required to reduce exposure to heavy metals.
Collapse
Affiliation(s)
- Fekadu Muche
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Dessie Ezez
- Department of Chemistry, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Atnafu Guadie
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| | - Molla Tefera
- Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Altunay N, Ul Haq H, Castro-Muñoz R. Optimization of vortex-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction for quantification of niclosamide in real samples. Food Chem 2023; 426:136646. [PMID: 37356246 DOI: 10.1016/j.foodchem.2023.136646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
In this manuscript, a green and fast vortex-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction (VA-HMDES-DLPME) method was developed for the selective extraction and determination of niclosamide in read samples, including rice, medicine tablets, and water samples. Here, hydrophobic magnetic deep eutectic solvents were used as the extracting solvent without requiring any centrifugation step. In the light of preliminary experiments, important parameters, such as volume of extraction solvent, pH, acetonitrile volume and vortex time, affecting the extraction efficiency of niclosamide were optimized using a Box-Behnken design. The linear dynamic range (0.25-120 µg/L), the limit of detection (0.08 µg/L), the limit of quantitation (0.25 µg/L), preconcentration factor (180), and enrichment factor (130) of the method were determined using optimized data. In particular, the validation parameters of the optimized VA-HMDES-DLPME, including robustness, matrix effect accuracy, and precision, were investigated. In addition to this, intra- and inter-day precisions were determined as ≤3.5 % and ≤4.1%, respectively. Finally, the optimized method was successfully used for the extraction of niclosamide in the selected samples prior to spectrophotometric analysis.
Collapse
Affiliation(s)
- Nail Altunay
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye.
| | - Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, Gdansk 80 - 233, Poland
| |
Collapse
|
6
|
da Costa WA, de França VF, da Silva Souza LS, de Andrade ASA, de Araújo DAM, Moreira EDT, Pontes LFBL. Physical-chemical and ecotoxic evaluation of different deep eutectic solvents for green analytical applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27398-z. [PMID: 37156946 DOI: 10.1007/s11356-023-27398-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
The search for new analytical methods is a latent reality in the so-called green analytical chemistry area, which aims at correlating analytical demands to environmental issues. Among the approaches used, it is possible to highlight green solvents as substitutes to the dangerous and conventional organic solvents as the most prominent alternative for this purpose. In the last few years, the amount of research focused on the usage of deep eutectic solvents (DESs) has been growing as an alternative to these issues. Thus, this work aimed to investigate the main physical-chemical and ecotoxical properties of seven different DESs. The results showed that DESs' evaluated properties are influenced by the chemical structure of their precursors, which may regulate DESs' viscosity, superficial tension, and antagonistic action against vegetable tissues and microbial cells. The constatations pointed here introduce a new perspective about the conscious usage of DESs on a green analytical point of view.
Collapse
Affiliation(s)
- Willyan Araújo da Costa
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Paraíba, João Pessoa/Paraíba, 58051-970, Brazil
| | - Vanessa Freire de França
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Paraíba, João Pessoa/Paraíba, 58051-970, Brazil
| | - Layanny Samara da Silva Souza
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Paraíba, João Pessoa/Paraíba, 58051-970, Brazil
| | | | | | - Edilene Dantas Teles Moreira
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraíba, Areia/Paraíba, Brazil
| | | |
Collapse
|
7
|
Andruch V, Kalyniukova A, Płotka-Wasylka J, Jatkowska N, Snigur D, Zaruba S, Płatkiewicz J, Zgoła-Grześkowiak A, Werner J. Application of deep eutectic solvents in sample preparation for analysis (update 2017–2022). Part A: Liquid phase microextraction. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Altunay N. Experimental design of magnetic ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction for the determination of 5-HMF in honey samples. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Fe (III) doped TiO2 nanoparticles prepared by high energy ball milling as booster for non-enzymatic, mediator-free and sensitive electrochemical sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Plastiras OE, Samanidou V. Applications of Deep Eutectic Solvents in Sample Preparation and Extraction of Organic Molecules. Molecules 2022; 27:7699. [PMID: 36431799 PMCID: PMC9693881 DOI: 10.3390/molecules27227699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The use of deep eutectic solvents (DES) is on the rise worldwide because of the astounding properties they offer, such as simplicity of synthesis and utilization, low-cost, and environmental friendliness, which can, without a doubt, replace conventional solvents used in heaps. In this review, the focus will be on the usage of DES in extracting a substantial variety of organic compounds from different sample matrices, which not only exhibit great results but surpass the analytical performance of conventional solvents. Moreover, the properties of the most commonly used DES will be summarized.
Collapse
Affiliation(s)
| | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
|
12
|
Application of deep eutectic solvents (DESs) as trace level drug extractants and drug solubility enhancers: State-of-the-art, prospects and challenges. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Sukanya, Kumara Swamy B, Shashikumara J, Sharma S. Poly (yellow PX4R) carbon paste electrode sensor for paracetamol: A voltammetric study. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Lalaouna AED, Hadef Y, Nekkaa A, Titel F, Dalia F. Cost-effective and earth-friendly chemometrics-assisted spectrophotometric methods for simultaneous determination of Acetaminophen and Ascorbic Acid in pharmaceutical formulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120422. [PMID: 34619510 DOI: 10.1016/j.saa.2021.120422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The development of analytical chemistry is omnipresent in all fields, this leads to considerable consumption of organic solvents and hazardous reagents with an increase in the production of waste to be treated. In this work, we developed simple, fast, cost-effective and above all environmentally friendly methods for the analysis of Acetaminophen (ACT) and Ascorbic acid (ASC) in synthetic mixtures and pharmaceutical formulation, using UV spectroscopy. Four chemometric methods were studied, including PLS-1 with full-spectrum (Full-PLS) and PLS-1 using three variable selection methods, namely subset selection through a genetic algorithm (GA), uninformative variable elimination using iterative predictor weighting (IPW), and variable selection by sub-window permutation analysis (SwPA). The accuracy of the developed methods was evaluated through the root mean square error of prediction (RMSEP), the mean absolute percentage error (MAPE) and the recovery values. All methods showed more accurate prediction results in comparison with full-PLS calibration. Furthermore, the results indicate that the GA-PLS models showed the highest prediction accuracy among all other models with RMSEP and MAPE values of (0.0494 and 0.610) and (0.0163 and 0.321) for the estimation of ACT and ASC, respectively. The proposed methods were successfully applied to the determination of ACT and ASC in their combined dosage form. In addition, the results obtained were statistically compared to those of the conventionally used HPLC method and were found to be in good agreement. The main advantages of the developed methods over HPLC during routine analysis are that they are faster, inexpensive, simple to perform, without the need for major pretreatment of samples. Besides, no organic solvents are used, and thus toxicity and pollution are avoided.
Collapse
Affiliation(s)
- Abd El Djalil Lalaouna
- Laboratory of Analytical Chemistry, Salah Boubnider University, Constantine 3, Faculty of Medicine, Department of Pharmacy, Constantine 25000, Algeria; Laboratory of Pharmacology and Toxicology, Mentouri University Constantine 1, Constantine 25000, Algeria.
| | - Youcef Hadef
- Laboratory of Analytical Chemistry, Badji Moukhtar University, Faculty of Medicine, Department of Pharmacy, Annaba 23000, Algeria; Laboratory for the Development and Control of Hospital Pharmaceutical Preparations, Annaba 23000, Algeria
| | - Amine Nekkaa
- Lorraine University, CNRS, LRGP, F-54000 Nancy, France
| | - Faouzi Titel
- Laboratory of Analytical Chemistry, Salah Boubnider University, Constantine 3, Faculty of Medicine, Department of Pharmacy, Constantine 25000, Algeria; Laboratory of Pharmacology and Toxicology, Mentouri University Constantine 1, Constantine 25000, Algeria
| | - Farid Dalia
- Laboratory of Pharmacology and Toxicology, Mentouri University Constantine 1, Constantine 25000, Algeria
| |
Collapse
|
15
|
Bozyiğit GD, Ayyıldız MF, Chormey DS, Engin GO, Bakırdere S. Trace level determination of eleven nervous system-active pharmaceutical ingredients by switchable solvent-based liquid-phase microextraction and gas chromatography-mass spectrometry with matrix matching calibration strategy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:58. [PMID: 34989878 DOI: 10.1007/s10661-021-09708-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
This study utilized switchable solvent liquid-phase microextraction (SS-LPME) to enrich eleven nervous system active pharmaceutical ingredients (APIs) from aqueous samples for their determination at trace levels by gas chromatography mass spectrometry. The analytes selected for the study included APIs utilized in antidepressant, antipsychotic, antiepileptic, and anti-dementia drugs. Parameters of the microextraction method including switchable solvent volume, concentration and volume of the trigger agent (sodium hydroxide), and sample agitation period were optimized univariately to boost extraction efficiency. Under the optimum conditions, the detection limits calculated for the analytes were in the range of 0.20-8.0 ng/mL, and repeatability for six replicate measurements as indicated by percent relative standard deviation values were below 10%. Matrix matching calibration strategy was used to enhance quantification accuracy for the analytes. The percent recovery results calculated for the eleven analytes ranged between 86 and 117%.
Collapse
Affiliation(s)
- Gamze Dalgıç Bozyiğit
- Faculty of Civil Engineering, Department of Environmental Engineering, Yıldız Technical University, 34220, İstanbul, Turkey
| | - Merve Fırat Ayyıldız
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Turkey
| | - Dotse Selali Chormey
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Turkey
| | - Güleda Onkal Engin
- Faculty of Civil Engineering, Department of Environmental Engineering, Yıldız Technical University, 34220, İstanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Turkey.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, 06670, Çankaya, Ankara, Turkey.
| |
Collapse
|
16
|
Jiménez-Skrzypek G, Ortega-Zamora C, González-Sálamo J, Hernández-Borges J. Miniaturized green sample preparation approaches for pharmaceutical analysis. J Pharm Biomed Anal 2022; 207:114405. [PMID: 34653744 DOI: 10.1016/j.jpba.2021.114405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022]
Abstract
The development of green sample preparation procedures is an extremely important research field in which more and more applications are constantly being proposed in different areas, including pharmaceutical analysis. This review article is aimed at providing a general overview of the development of miniaturized green analytical sample preparation procedures in the pharmaceutical analysis field, with special focus on the works published between January 2017 and July 2021. Particular attention has been paid to the application of environmentally friendly solvents and sorbents as well as nanomaterials or high extraction capacity sorbents in which the solvent volumes and reagents amounts are drastically reduced, with their subsequent advantages from the sustainability point of view.
Collapse
Affiliation(s)
- Gabriel Jiménez-Skrzypek
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España
| | - Cecilia Ortega-Zamora
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España.
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, España.
| |
Collapse
|
17
|
Sukanya SD, Swamy BEK, Shashikumara JK, Sharma SC, Hariprasad SA. Poly (Orange CD) sensor for paracetamol in presence of folic acid and dopamine. Sci Rep 2021; 11:22332. [PMID: 34785686 PMCID: PMC8595450 DOI: 10.1038/s41598-021-01311-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
In the present work, Orange CD was chosen as an intriguing modifier for the electropolymerization on the surface of CPE by the CV technique. A novel, sensitive, and cost-effective poly (Orange CD) MCPE (PoOCD/MCPE) sensor was utilized for the selective detection of paracetamol (PA) in 0.2 M phosphate buffer solution (PBS) of pH 7.4. The oxidation peak current of PA was vastly enhanced at the sensor. The scan rate study is suggested that electro-oxidation of PA was adsorption-controlled. The pH study testifies the redox pathways transport with the same quantity of electrons and protons. The detection limit of PA is found to be 2.64 µM. DPV results show that substantial peak separation between PA, folic acid (FA), and dopamine (DA) could be facilitating their individual and simultaneous determination on the sensor. The decorated sensor demonstrates high sensitivity, stability, reproducibility, repeatability and has been successfully exploited for the detection of PA in a tablet with promising results.
Collapse
Affiliation(s)
- S D Sukanya
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - B E Kumara Swamy
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India.
| | - J K Shashikumara
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivamogga, Karnataka, 577451, India
| | - S C Sharma
- National Assessment and Accreditation Council (Work Carried Out as Honorary Professor), Jain University, Bangalore, Karnataka, 560 069, India.
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India.
| | | |
Collapse
|
18
|
Iranifam M, Toolooe Gardeh Rasht M, Al Lawati HAJ. CuS nanoparticles-enhanced luminol-O 2 chemiluminescence reaction used for determination of paracetamol and vancomycin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120038. [PMID: 34118521 DOI: 10.1016/j.saa.2021.120038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
A new chemiluminescence (CL) method was proposed to measure two widely used drugs, including paracetamol (PCM) and vancomycin (VAN). The CL reaction used was the CuS nanoparticles (CuS NPs)-luminol-O2 system. In this system, CuS NPs played the role of catalyst and increased the CL intensity. CuS NPs were easily synthesized by quick-precipitation. CuS NPs were characterized by spectroscopic techniques, and the mean size of NPs was estimated to be about 9 nm. In the developed CL methods, PCM and VAN decreased the CL intensity. In the proposed method, the linear concentration ranges were 4.0 × 10-5-4.0 × 10-4 mol L-1 of PCM and 2.0 × 10-5-6.0 × 10-4 mol L-1 of VAN. The limit of detections were 2.9 × 10-5 mol L-1 and 8.9 × 10-6 mol L-1 for PCM and VAN, respectively. The relative standard deviations (RSD) of the CL method were 2.99 and 4.31 (n = 6) for the determination of 3.0 × 10-4 mol L-1 PCM and VAN, respectively. It was also shown that the CL methods can measure PCM and VAN concentrations in various real samples.
Collapse
Affiliation(s)
- Mortaza Iranifam
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran.
| | | | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
19
|
Patil VB, Sawkar RR, Ilager D, Shetti NP, Tuwar SM, Aminabhavi TM. Glucose‐based carbon electrode for trace‐level detection of acetaminophen. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vinoda B. Patil
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | - Rakesh R. Sawkar
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | - Davalasab Ilager
- Center for Electrochemical Science and Materials, Department of Chemistry K.L.E. Institute of Technology Hubballi Karnataka India
| | - Nagaraj P. Shetti
- School of Advanced Sciences KLE Technological University Vidyanagar Hubballi Karnataka 580031 India
| | - Suresh M. Tuwar
- Department of Chemistry Karnatak Science College Dharwad Karnataka India
| | | |
Collapse
|
20
|
Pourkarim F, Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Gharakhani A, Jouyban A. Validation of a colorimetric method for determination of paracetamol in exhaled breath condensate. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01520-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Uzun D. Determination of Paracetamol Based on 3‐Amino‐4H‐1,2,4‐triazole Coated Glassy Carbon Surface in Pharmaceutical Sample. ELECTROANAL 2021. [DOI: 10.1002/elan.202100002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Demet Uzun
- Gazi University Faculty of Science Department of Chemistry 06500 Ankara/ Turkey
| |
Collapse
|
22
|
Atsever N, Borahan T, Girgin A, Selali Chormey D, Bakırdere S. A simple and effective determination of methyl red in wastewater samples by UV–Vis spectrophotometer with matrix matching calibration strategy after vortex assisted deep eutectic solvent based liquid phase extraction and evaluation of green profile. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Rama R, Meenakshi S, Pandian K, Gopinath SCB. Room Temperature Ionic Liquids-Based Electrochemical Sensors: An Overview on Paracetamol Detection. Crit Rev Anal Chem 2021; 52:1422-1431. [PMID: 33622098 DOI: 10.1080/10408347.2021.1882834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Paracetamol (PAR) is an effective antipyretic and analgesic drug utilized worldwide, safer at therapeutic levels but over-dosing and the chronic usage of PAR results in accumulation of toxic metabolites, which leads to kidney and liver damages. Hence, a simple, rapid, cost-effective, and sensitive analytical technique is needed for the accurate determination of PAR in pharmaceutical and biological samples. Though numerous techniques have been reported for PAR detection, electrochemical methods are being receiving more interest due to their advantages. Moreover, in the past few decades, room temperature ionic liquids (RTILs) have been utilized in electrochemical sensors due to their attractive properties. In this present review, authors gathered research findings available for the determination of PAR using RTIL-based electrochemical sensors and discussed. The advantages and limitations in these systems as well as the future research directions are summarized.
Collapse
Affiliation(s)
- R Rama
- Department of Chemistry, School of Basic Sciences, VELS Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - S Meenakshi
- Department of Chemistry, School of Basic Sciences, VELS Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - K Pandian
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - S C B Gopinath
- Institute of Nanoelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
24
|
Sustainable green solvents for microextraction techniques: Recent developments and applications. J Chromatogr A 2021; 1640:461944. [PMID: 33556679 DOI: 10.1016/j.chroma.2021.461944] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/20/2023]
Abstract
The development and application of alternative green solvents in analytical techniques consist of trends in sample preparation, since this subject represents an important step toward sustainability in experimental procedures. This review is focused on the main theoretical aspects related to deep eutectic solvents (DES), switchable hydrophilicity solvents (SHS) and supramolecular solvents (SUPRAS). Recent applications are highlighted, particularly for the extraction of different analytes from environmental, biological and food matrices. Moreover, novel configurations are emphasized, aiming for efficient, automated and high-throughput procedures. This review also provides some critical points regarding the use of these solvents and their green aspects.
Collapse
|
25
|
Li Y, Yu X, Li R, Zhao F, Liu G, Wang X. Selective and sensitive visible-light-prompt photoelectrochemical sensor of paracetamol based on Bi 2WO 6 modified with Bi and copper sulfide. RSC Adv 2021; 11:2884-2891. [PMID: 35424228 PMCID: PMC8693892 DOI: 10.1039/d0ra08599e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
Paracetamol (PA) is a ubiquitous non-steroidal anti-inflammatory drug, mainly used to treat headaches, arthritis and osteoarthritis and other diseases. In this work, a novel label free photoelectrochemical (PEC) sensor based on Bi-CuS/Bi2WO6 has been developed for the detection of PA, which was fabricated by a simple two-step hydrothermal process. It was found that Bi-CuS/Bi2WO6 with a CuS/Bi2WO6 heterojunction and surface plasmon resonance (SPR) effect of Bi possesses enhanced charge transfer and absorption wavelengths under visible light, particularly when compared to pristine Bi2WO6 films, thus producing an increase in the observed photocurrent. The photocurrent was increased after adding PA. And the photocurrent increment was linear with PA concentration in the range from 0.01-60 μM with a detection limit of 2.12 nM. Moreover, the PEC sensor also exhibited high anti-interference property and acceptable stability. In the present study, a Bi-CuS/Bi2WO6 photoelectrode is considered a promising candidate for carrying out PEC analysis.
Collapse
Affiliation(s)
- Yijiong Li
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Xiaoguang Yu
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Ruiqi Li
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Feng Zhao
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Guobin Liu
- Department of Orthopaedics, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| | - Xin Wang
- Department of Pathology, The First Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China
| |
Collapse
|
26
|
Emdadi S, Sorouraddin MH, Denanny L. Enhanced chemiluminescence determination of paracetamol. Analyst 2021; 146:1326-1333. [DOI: 10.1039/d0an01557a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to the severe consequences of potential overdoses of paracetamol (PCM) on the human body, the measurement of PCM in pharmaceutical and biological samples is essential.
Collapse
Affiliation(s)
- Simin Emdadi
- Department of Analytical Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | | | - Lynn Denanny
- WESTChem Department of Pure and Applied Chemistry
- University of Strathclyde
- Technology and Innovation Centre
- Glasgow
- UK
| |
Collapse
|
27
|
Plastiras OE, Andreasidou E, Samanidou V. Microextraction Techniques with Deep Eutectic Solvents. Molecules 2020; 25:E6026. [PMID: 33352701 PMCID: PMC7767243 DOI: 10.3390/molecules25246026] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023] Open
Abstract
In this review, the ever-increasing use of deep eutectic solvents (DES) in microextraction techniques will be discussed, focusing on the reasons needed to replace conventional extraction techniques with greener approaches that follow the principles of green analytical chemistry. The properties of DES will be discussed, pinpointing their exceptional performance and analytical parameters, justifying their current extensive scientific interest. Finally, a variety of applications for commonly used microextraction techniques will be reported.
Collapse
Affiliation(s)
| | | | - Victoria Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (O.-E.P.); (E.A.)
| |
Collapse
|
28
|
Altunay N, Elik A, Kaya S. A simple and quick ionic liquid-based ultrasonic-assisted microextraction for determination of melamine residues in dairy products: Theoretical and experimental approaches. Food Chem 2020; 326:126988. [DOI: 10.1016/j.foodchem.2020.126988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/28/2022]
|
29
|
Shishov A, Gerasimov A, Nechaeva D, Volodina N, Bessonova E, Bulatov A. An effervescence-assisted dispersive liquid–liquid microextraction based on deep eutectic solvent decomposition: Determination of ketoprofen and diclofenac in liver. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104837] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
|