1
|
Rezapour R, Arvand M, Habibi MF. A "signal-on" photoelectrochemical sensor based on hierarchical titanium dioxide nanowires/microflowers decorated graphite-like carbon nitride quantum dots for glutathione detection. Talanta 2024; 285:127448. [PMID: 39721129 DOI: 10.1016/j.talanta.2024.127448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Glutathione (GSH) is a bioactive tripeptide with important physiological functions in animals, plants, and microorganisms. GSH participates in various biochemical reactions in vivo and is known for its antioxidant, anti-allergy, and detoxification properties. This study introduces an innovative photoelectrochemical (PEC) method for GSH detection, leveraging a fluorine-doped tin oxide (FTO) electrode enhanced by TiO2 nanoflowers and graphitic carbon nitride quantum dots (g-CNQDs). This design formed a type-II heterojunction, which facilitated efficient charge separation and transport. Furthermore, incorporating TiO2 nanoflowers increases the surface area, while adding g-CNQDs led to a narrowing of the semiconductor bandgap. The fabricated electrode exhibits highly attractive photo-electrocatalytic activity towards GSH detection in neutral media at a low potential bias. The developed PEC sensor demonstrates a wide linear range of 1.0 × 10-13 to 5 × 10-5 mol L-1, a low detection limit of 5.0 fmol L-1, and high sensitivity. These remarkable analytical characteristics highlight the potential of this PEC platform for sensitive and selective GSH detection in various biomedical and environmental applications.
Collapse
Affiliation(s)
- Romina Rezapour
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| | - Majid Arvand
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
| | - Maryam Farahmand Habibi
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran
| |
Collapse
|
2
|
Feng L, He R, Li H, Chen S, Lv C, Zhang S, Liu N, Shi Y, Liu G, Zhao G. An ultra-efficient pretreatment method adopted LPUV/CoFe 2O 4/PMS-based photolysis for accurate detection of Cd(II) and Pb(II) in water via SWASV. WATER RESEARCH 2024; 262:122066. [PMID: 39029395 DOI: 10.1016/j.watres.2024.122066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Dissolved organic matter (DOM) is a widely occurring substance in rivers that can strongly complex with heavy metal ions (HMIs), severely interfering with the electrochemical signal of anodic stripping voltammetry (ASV) and reducing the detection accuracy of HMIs in water. In this study, we investigated a novel advanced oxidation process (AOP) that involves the activation of peroxymonosulfate (PMS) using low-pressure ultraviolet (LPUV) radiation and CoFe2O4 photocatalysis. This novel AOP was used for the first time as an effective pretreatment method to break or weaken the complexation between HMIs and DOM, thereby restoring the electrochemical signals of HMIs. The key parameters, including the PMS concentration, CoFe2O4 concentration, and photolysis time, were optimized to be 6 mg/L, 12 mg/L, and 30 s for eliminating DOM interference during the electrochemical analysis of HMIs via LPUV/CoFe2O4-based photolysis. Investigations of the microstructure, surface morphology, specific surface area, and pore volume of CoFe2O4 were conducted to reveal the exceptional signal recovery capability of LPUV/CoFe2O4/PMS-based photolysis in mitigating interference from DOM during HMIs analysis. The PMS activation mechanism, which is critical to the signal recovery process, was elucidated by analyzing the reactive oxygen species (ROS) and the surface elemental composition of CoFe2O4. Additionally, the degradation and transformation behavior of humus-HMIs complexes were analyzed to study the mechanism of ASV signal recovery further. Notably, the detection results of HMIs in actual water samples obtained using the proposed pretreatment method were compared with those obtained from ICP-MS, yielding an RMSE less than 0.04 μg/L, which indicated the satisfactory performance of the proposed pretreatment method for the ASV detection of HMIs in complex actual samples.
Collapse
Affiliation(s)
- Liya Feng
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Renjie He
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Haonan Li
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Shaowen Chen
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Cheng Lv
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Shijie Zhang
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Ning Liu
- Key Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083 PR China
| | - Yujie Shi
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Gang Liu
- Key Lab of Modern Precision Agriculture System Integration Research, Ministry of Education of China, China Agricultural University, Beijing 100083 PR China
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China.
| |
Collapse
|
3
|
Zhang Z, Li M, Zhai L, Wu J, Li L. Photoelectrochemical sensing of glutathione using bismuth vanadate (BiVO 4) decorated with polyaniline (PANI) and cadmium sulfide (CdS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:969-978. [PMID: 36727617 DOI: 10.1039/d2ay01615j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A ternary nanocomposite photoelectrode composed of cadmium sulfide (CdS), polyaniline (PANI), and bismuth vanadate (BiVO4) was successfully designed by combining cyclic voltammetry (CV) with electrochemical deposition and high-temperature calcination. The first synthesized CdS/PANI/BiVO4 composite was used as a photoelectrochemical (PEC) monitoring platform for glutathione (GSH). The ternary CdS/PANI/BiVO4 nanocomposites exhibited higher PEC activity, which was attributed to the accelerated electron transfer by the loading of CdS and PANI, which enables the material surface to better adsorb the electrons separated by GSH, thereby oxidizing it into GSSH. The photoanodes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy, and photoelectrochemical experiments. Under the optimal experimental conditions, the BiVO4 electrode modified with CdS and PANI exhibited a linear response in the concentration range of 0.1-20 μM with a sensitivity of 0.669 μA mM-1 cm-2 and a detection limit of 40 nM. Moreover, the PEC sensor exhibits good reproducibility and long-term stability. In summary, the designed materials have excellent electrochemical properties, which make them ideal candidates for PEC detection of GSH.
Collapse
Affiliation(s)
- Zuxing Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Mingqing Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Liying Zhai
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Jiahui Wu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| | - Li Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China.
| |
Collapse
|
4
|
Bakhnooh F, Arvand M. A novel “signal-off” photoelectrochemical sensing platform for selective detection of rutin based on Cu2SnS3/TiO2 heterojunction. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal Chim Acta 2022; 1233:340362. [DOI: 10.1016/j.aca.2022.340362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
|
6
|
Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
A nano-enzymatic photoelectrochemical L-cysteine biosensor based on Bi2MoO6 modified honeycomb TiO2 nanotube arrays composite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Sensitive photoelectrochemical detection of colitoxin DNA based on NCDs@CuO/ZnO heterostructured nanocomposites with efficient separation capacity of photo-induced carriers. Mikrochim Acta 2022; 189:166. [PMID: 35355135 DOI: 10.1007/s00604-022-05280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
A metal-organic framework (MOF) of Cu-TPA (terephthalic acid) microsphere was prepared, followed by calcinating the MOF precursor of Cu-TPA/ZIF-8 mixture to obtain the CuO/ZnO. N-doped carbon dots (NCDs) were employed to combine the CuO/ZnO composite to form a tripartite heterostructured architecture of NCDs@CuO/ZnO, which led to a fierce enlargement of the photocurrent response. This was ascribed to the thinner-shell structure of the CuO microsphere and the fact that hollow ZnO particles could sharply promote the incidence intensity of visible light. The more porous defectiveness exposed on CuO/ZnO surface was in favor of rapidly infiltrating electrolyte ions. The p-n type CuO/ZnO composite with more contact interface could abridge the transfer distance of photo-induced electron (e-1)/hole (h+) pairs and repress their recombination availably. NCDs not only could boost electron transfer rate on the electrode interface but also successfully sensitized the CuO/ZnO composite, which resulted in high conversion efficiency of photon-to-electron. The probe DNA (S1) was firmly assembled on the modified ITO electrode surface (S1/NCDs@CuO/ZnO) through an amidation reaction. Under optimal conditions, the prepared DNA biosensor displayed a wide linear range of 1.0 × 10-6 ~ 7.5 × 10-1 nM and a low limit of detection (LOD) of 1.81 × 10-7 nM for colitoxin DNA (S2) measure, which exhibited a better photoelectrochemistry (PEC) analysis performance than that obtained by differential pulse voltammetry techniques. The relative standard deviation (RSD) of the sensing platform for target DNA detection of 5.0 × 10-2 nM was 6.3%. This proposed DNA biosensor also showed good selectivity, stability, and reproducibility, demonstrating that the well-designed and synthesized photoactive materials of NCDs@CuO/ZnO are promising candidates for PEC analysis.
Collapse
|
9
|
Zhang Z, Liu Q, Zhang M, You F, Hao N, Ding C, Wang K. Simultaneous detection of enrofloxacin and ciprofloxacin in milk using a bias potentials controlling-based photoelectrochemical aptasensor. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125988. [PMID: 34492885 DOI: 10.1016/j.jhazmat.2021.125988] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
It is important to develop highly-active photoelectrochemical (PEC) materials and use novel sensing strategy for constructing high-PEC-performance sensors with multiplex detection abilities, owing to the simultaneous presence of multiple antibiotic residues in food. Herein, a bias-potential-based PEC aptasensor was prepared for the trace detection of dual antibiotic analytes, enrofloxacin (ENR) and ciprofloxacin (CIP), which often coexist in milk samples. Here, two materials were developed with excellent PEC performance: three-dimensional nitrogen-doped graphene-loaded copper indium disulfide (CuInS2/3DNG) and Bi3+-doped black anatase titania nanoparticles decorated with reduced graphene oxide (Bi3+/B-TiO2/rGO). By applying different bias potentials to the two materials near one ITO electrode, the cathodic current generated by CuInS2/3DNH and the anodic current generated by Bi3+/B-TiO2/rGO could be clearly distinguished without interfering with each other. Then, ENR and CIP aptamers were respectively modified onto the surface of CuInS2/3DNH and Bi3+/B-TiO2/rGO to construct a PEC aptasensor for the sensitive detection of ENR and CIP. Under optimal conditions, the proposed aptasensor exhibited wide linear ranges of ENR (0.01-10000 ng/mL) and CIP (0.01-1000 ng/mL), and relatively low detection limits of 3.3 pg/mL to ENR and CIP (S/N = 3). The aptasensor was successfully applied to the detection of ENR and CIP in milk samples.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fuheng You
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
10
|
Gonçalves JM, Iglesias BA, Martins PR, Angnes L. Recent advances in electroanalytical drug detection by porphyrin/phthalocyanine macrocycles: developments and future perspectives. Analyst 2021; 146:365-381. [DOI: 10.1039/d0an01734e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Porphyrins and phthalocyanines used to construct sensors for electroanalytical drug detection.
Collapse
Affiliation(s)
- Josué M. Gonçalves
- Instituto de Química
- Universidade de São Paulo
- 05508-000 São Paulo-SP
- Brazil
| | - Bernardo A. Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria - RS
- Brazil
| | - Paulo R. Martins
- Instituto de Química
- Universidade Federal de Goiás
- 74690-900 Goiânia-GO
- Brazil
| | - Lúcio Angnes
- Instituto de Química
- Universidade de São Paulo
- 05508-000 São Paulo-SP
- Brazil
| |
Collapse
|
11
|
|