1
|
Chen H, Li Y, Wang Z, Wang D, Feng L, Li S, Wu C, Wang H. A selective colorimetric and efficient removal strategy for mercury(II) in aquatic systems using mesoporous Fe 3O 4-loaded silver probes. Analyst 2024; 149:1784-1790. [PMID: 38380690 DOI: 10.1039/d4an00052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Mesoporous Fe3O4-loaded silver nanocomposites (Fe3O4@Ag) were simply fabricated as bi-functional nanozymes for the catalysis-based detection and removal of Hg2+ ions. It was found that the as-prepared magnetic Fe3O4@Ag could display peroxidase-like catalysis activity that could be rationally enhanced in the presence of Hg2+ ions. To our surprise, the shell of the Ag element may decrease the catalysis of the Fe3O4 to some degree. However, the Ag particles could serve as the probes for specifically recognizing Hg2+ ions and trigger increased catalysis through the formation of Ag-Hg alloys, with a decreased signal background. A high-throughput colorimetric analytical method was thereby developed based on the Fe3O4@Ag catalysis for probing Hg2+ ions in the muscles of fish by using 96-well plates, at linear Hg2+ concentrations ranging from 0.010 to 2.5 mg kg-1. Moreover, the developed colorimetric analytical method was applied to evaluate Hg2+ levels in muscle samples of different kinds of fish. Unexpectedly, an obvious difference of Hg2+ levels in muscles of four kinds of fish was discovered, with the order of snakehead (Ophicephalus argus) > largemouth bass (Micropterus salmoides) > crucian carp (Carassius auratus) > silver carp (Hypophthalmichthys molitrix), where the carnivorous fish showed higher Hg2+ levels than the omnivorous or plant-based ones. Moreover, the as-fabricated Fe3O4@Ag adsorbents with their large specific surface area and high environmental robustness could exhibit efficient Hg2+ adsorption with capacities of up to 397.60 mg g-1. A removal efficiency of 99.40% can also be expected for Hg2+ ions from wastewater, with the magnet-aided recycling of Fe3O4@Ag adsorbents. Such an Fe3O4@Ag-based colorimetric analysis and removal strategy for Hg2+ ions should find wide applications in the fields of aquatic food safety, environmental monitoring, and clinical diagnostics of Hg-poisoning diseases.
Collapse
Affiliation(s)
- Huilan Chen
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, P.R. China.
| | - Yunyan Li
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, P.R. China.
| | - Ziyi Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, P.R. China.
| | - Di Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, P.R. China.
| | - Luping Feng
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, P.R. China.
| | - Shuai Li
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, P.R. China.
| | - Choufei Wu
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, P.R. China.
| | - Hua Wang
- Huzhou Key Laboratory of Medical and Environmental Application Technologies, School of Life Sciences, Huzhou University, Zhejiang 313000, P.R. China.
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P.R. China
| |
Collapse
|
2
|
Swargiary H, Mustafa Radiul S, Kalita MP, Hazarika Conceptualisation S. Photoexcimerisation of pure acriflavine dye in water and alcohol. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
3
|
Yu HZ, Xu QQ, Cheng XL, Xue YQ, Ma HY, Ding XX, Liu Q, Li SS, Zhang YX. Hollow aluminosilicate microspheres with increased surface hydroxyl groups by etching method for electrochemical detection of Hg(II). Microchem J 2022. [DOI: 10.1016/j.microc.2022.107610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Xu G, Guo N, Zhang Q, Wang T, Song P, Xia L. A sensitive surface-enhanced resonance Raman scattering sensor with bifunctional negatively charged gold nanoparticles for the determination of Cr(VI). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154598. [PMID: 35307417 DOI: 10.1016/j.scitotenv.2022.154598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Hexavalent chromium (Cr(VI)) pollution in the water system has seriously endangered human health and the environment. Herein, we propose a rapid, simple and sensitive surface-enhanced resonance Raman scattering (SERRS) sensor with the bifunctional negatively charged gold nanoparticles ((-)AuNPs) which employ as not only the oxidoreductase-like nanozyme but also the substrate to determine Cr(VI). (-)AuNPs effectively promoted the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into the blue product of 3,3',5,5'-tetramethylbenzidine diamine (oxTMB) in the presence of Cr(VI) and generated a strong SERRS signal at 1611 cm-1. According to this principle, the Raman intensity difference at 1611 cm-1 exhibited a satisfactory linear relationship with the logarithm of the Cr(VI) concentration from 10-5 to 10-9 M with a low limit of detection (LOD) of 0.4 nM. In addition, the possible SERRS enhancement mechanism, selectivity and reproducibility were also investigated. What's more, the SERRS platform was successfully applied in the complicated water samples, which was anticipated to become a promising analytical method for monitoring of Cr(VI) in the environment.
Collapse
Affiliation(s)
- Guangda Xu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Na Guo
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qijia Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Tongtong Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Peng Song
- College of Physics, Liaoning University, Shenyang 110036, China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
5
|
Du J, Li J, Li Y, Wang D, Cao H, He W, Zhou Y. Acridine-based dyes as high-performance near-infrared Raman reporter molecules for cell imaging. RSC Adv 2022; 12:3380-3385. [PMID: 35425341 PMCID: PMC8979271 DOI: 10.1039/d1ra08827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
A surface-enhanced Raman scattering (SERS) nanoprobe has been proven to be a promising tool for near-infrared (NIR) biomedical imaging and diagnosis because of its high sensitivity and selectivity. However, the development of NIR SERS reporters has been a bottleneck impeding the preparation of ultrasensitive SERS probes. Herein, we report the design and synthesis of a series of SERS reporters in the NIR region based on 10-methylacridine (AD). The AD nanotags (gold nanostar–AD molecules–BSA, AuNS–AD–BSA) exhibit appreciable SERS signals and can be detected at as low as the sub-picomole level. The results of in vitro imaging experiments show that it can be used in live-cell delineation. A surface-enhanced Raman scattering (SERS) nanoprobe has been proven to be a promising tool for near-infrared (NIR) biomedical imaging and diagnosis because of its high sensitivity and selectivity.![]()
Collapse
Affiliation(s)
- Jiasheng Du
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhan Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanli He
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Zhou
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Synthesis of environment-friendly and label-free SERS probe for Iron(III) detection in integrated circuit cleaning solution waste. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Tris(2,2′-bipyridine)ruthenium(II)/thiosemicarbazide electrochemiluminescence for the detection of thiosemicarbazide and mercury (II). Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Marczak M, Biereg K, Zadykowicz B, Sikorski A. Structural characterization and theoretical calculations of the monohydrate of the 1:2 cocrystal salt formed from acriflavine and 3,5-dinitrobenzoic acid. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2021; 77:116-122. [PMID: 33536375 DOI: 10.1107/s2053229621000681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022]
Abstract
The synthesis and structural characterization of the monohydrated 1:2 cocrystal salt of acriflavine with 3,5-dinitrobenzoic acid [systematic name: 3,6-diamino-10-methylacridin-10-ium 3,5-dinitrobenzoate-3,5-dinitrobenzoic acid-water (1/1/1), C14H14N3+·C7H3N2O6-·C7H4N2O6·H2O] are reported. Single-crystal X-ray diffraction measurements show that the title solvated monohydrate salt crystalizes in the monoclinic space group P21 with one acriflavine cation, a 3,5-dinitrobenzoate anion, a 3,5-dinitrobenzoic acid molecule and a water molecule in the asymmetric unit. The neutral and anionic forms of 3,5-dinitrobenzoic acid are linked via O-H...O hydrogen bonds to form a monoanionic dimer. Neighbouring monoanionic dimers of 3,5-dinitrobenzoic acid are linked by nitro-nitro N-O...N and nitro-acid N-O...π intermolecular interactions to produce a porous organic framework. The acriflavine cations are linked with carboxylic acid molecules directly via amine-carboxy N-H...O, amine-nitro N-H...O and acriflavine-carboxy C-H...O hydrogen bonds, and carboxy-acriflavine C-O...π, nitro-acriflavine N-O...π and acriflavine-nitro π-π interactions, or through the water molecule by amino-water N-H...O and water-carboxy O-H...O hydrogen bonds, and are located in the voids of the porous organic framework. The intermolecular interactions were studied using the CrystalExplorer program to provide information about the interaction energies and the dispersion, electrostatic, polarization and repulsion contributions to the lattice energy.
Collapse
Affiliation(s)
- Maria Marczak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Kinga Biereg
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Beata Zadykowicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| |
Collapse
|
9
|
Yu J, Han J, Li P, Huang Z, Chen S. Simultaneous Determination of Cd
2+
, Cu
2+
, Pb
2+
and Hg
2+
Based on 1,4‐Benzenedithiol‐2,5‐diamino‐hydrochloride‐1,3,5‐triformylbenzene Covalent‐Organic Frameworks. ChemistrySelect 2020. [DOI: 10.1002/slct.202003417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingguo Yu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Jiajia Han
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Pinghua Li
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Zhenzhong Huang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| | - Shouhui Chen
- College of Chemistry and Chemical Engineering Jiangxi Normal University 99 Ziyang Road Nanchang 330022 China
| |
Collapse
|