1
|
Silva RM, Sperandio GH, da Silva AD, Okumura LL, da Silva RC, Moreira RPL, Silva TA. Electrochemically reduced graphene oxide films from Zn-C battery waste for the electrochemical determination of paracetamol and hydroquinone. Mikrochim Acta 2023; 190:273. [PMID: 37351644 DOI: 10.1007/s00604-023-05858-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023]
Abstract
Contributing to the development of sustainable electroanalytical chemistry, electrochemically reduced graphene oxide (ERGO) films obtained from residual graphite of discharged Zn-C batteries are proposed in this work. Graphite from the cathode of discarded Zn-C batteries was recovered and used in the synthesis of graphene oxide (GO) by the modified Hummer's method. The quality of the synthesized GO was verified using different characterization methods (FT-IR, XRD, SEM, and TEM). GO films were deposited on a glassy carbon electrode (GCE) by the drop coating method and then electrochemically reduced by cathodic potential scanning using cyclic voltammetry. The electrochemical features of the ERGO films were investigated using the ferricyanide redox probe, as well as paracetamol (PAR) and hydroquinone (HQ) molecules as model analytes. From the cyclic voltammetry assays, enhanced heterogeneous electron transfer rate constants (k0) were observed for all redox systems studied. In analytical terms, the ERGO-based electrode showed higher analytical sensitivity than the bare and GO-modified GCE. Using differential pulse voltammetry, wide linear response ranges and limits of detection of 0.14 μmol L-1 and 0.65 μmol L-1 were achieved for PAR and HQ, respectively. Furthermore, the proposed sensor was successfully applied to the determination of PAR and HQ in synthetic urine and tap water samples (recoveries close to 100%). The outstanding electrochemical and analytical properties of the proposed ERGO films are added to the very low cost of the raw material, being presented as a green-based alternative for the development of electrochemical (bio)sensors with unsophisticated resources.
Collapse
Affiliation(s)
- Rafael Matias Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Leonardo Luiz Okumura
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Renê Chagas da Silva
- Department of Physics, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
2
|
Porous carbon fabricated by a residue from Longquan lignite ethanolysis as an electrochemical sensor for simultaneous detection of hydroquinone and catechol in the presence of resorcinol. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
Khan MM, Yousuf MA, Ahamed P, Alauddin M, Tonu NT. Electrochemical Detection of Dihydroxybenzene Isomers at a Pencil Graphite Based Electrode. ACS OMEGA 2022; 7:29391-29405. [PMID: 36033678 PMCID: PMC9404491 DOI: 10.1021/acsomega.2c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this work, an HB pencil electrode (HBPE) was electrochemically modified by amino acids (AAs) glycine (GLY) and aspartic acid (ASA) and designated as GLY-HB and ASA-HB electrodes. They were used in the detection of dihydroxybenzene isomers (DHBIs) such as hydroquinone (HQ), catechol (CC), and resorcinol (RS), by cyclic voltammetry (CV), and by differential pulse voltammetry. HBPE was characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. These three electrodes showed a linear relationship of current with concentration of DHBIs, and the electrochemical processes were diffusion controlled in all cases. In simultaneous detection, the limit of detection, based on signal-to-noise ratio (S/N = 3), for HQ, CC, and RS was 12.473, 16.132, and 25.25 μM, respectively, at bare HBPE; 5.498, 7.119, and 14.794 μM, respectively, at GLY-HB; and 22.459, 25.478, and 38.303 μM, respectively, at ASA-HB. The sensitivity for HQ, CC, and RS was 470.481, 363.781, and 232.416 μA/mM/cm2, respectively, at bare HBPE; 364.785, 282.712, and 135.560 μA/mM/cm2, respectively, at GLY-HB; and 374.483, 330.108, and 219.574, respectively, at ASA-HB. The interference studies clarified the suitability and reliability of the electrodes for the detection of HQ, CC, and RS in an environmental system. Real sample analysis was done using tap water, and the proposed electrodes expressed recovery with high reproducibility. Meanwhile, these three electrodes have excellent sensitivity and selectivity, which can be used as a promising technique for the detection of DHBIs simultaneously.
Collapse
Affiliation(s)
- Md. Muzahedul
I. Khan
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Mohammad A. Yousuf
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Parbhej Ahamed
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Mohammad Alauddin
- Department
of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat T. Tonu
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
- Chemistry
Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
4
|
Emphasis on the incorporation of Tropaeolin OO dye and silver nanoparticles for voltammetric estimation of flibanserin in bulk form, tablets and human plasma. Talanta 2022; 245:123420. [PMID: 35413628 DOI: 10.1016/j.talanta.2022.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/17/2022] [Accepted: 03/27/2022] [Indexed: 12/29/2022]
Abstract
A novel electrochemical sensor based on the electro-deposition of silver nanoparticles (AgNPs) on Tropaeolin OO (poly-TO) layers over pencil graphite electrode (PGE) surface was fabricated for the first time for voltammetric determination of flibanserin (FBS); a drug enhances female sexual performance. Further characterization studies using cyclic voltammetry (CV), square wave voltammetry (SWV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were conducted. The AgNPs synergistic effect on poly-TO layers facilitates the FBS electro-oxidation in phosphate buffer solution (pH 6.0) and its determination in bulk form, tablets and in human plasma. Following ICH guidelines, validation of the proposed SWV method for FBS analysis was successfully achieved using the fabricated sensor (AgNPs@poly-TO/PGE). Under the optimal instrumental and experimental conditions, the anodic oxidation peak current was directly proportional to FBS concentration in the range from 0.1 to 8.5 μmol L-1 with low detection and quantitation limits (0.0286 and 0.0867 μmol L-1, respectively). High sensitivity, selectivity as well as easiness of fabrication are the main advantages of the modified sensor.
Collapse
|
5
|
Dalkiran B, Brett CM. Poly(safranine T)-deep eutectic solvent/copper oxide nanoparticle-carbon nanotube nanocomposite modified electrode and its application to the simultaneous determination of hydroquinone and catechol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Sun L, Guo H, Pan Z, Liu B, Zhang T, Yang M, Wu N, Zhang J, Yang F, Yang W. In-situ reducing platinum nanoparticles on covalent organic framework as a sensitive electrochemical sensor for simultaneous detection of catechol, hydroquinone and resorcinol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Chang F, Wang H, He S, Gu Y, Zhu W, Li T, Ma R. Simultaneous determination of hydroquinone and catechol by a reduced graphene oxide-polydopamine-carboxylated multi-walled carbon nanotube nanocomposite. RSC Adv 2021; 11:31950-31958. [PMID: 35495507 PMCID: PMC9041607 DOI: 10.1039/d1ra06032e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 01/31/2023] Open
Abstract
A reduced graphene oxide–polydopamine–carboxylated multi-walled carbon nanotube (RGO–PDA–cMWCNT) nanocomposite was fabricated via a facile, one-pot procedure and was characterized by a variety of techniques. A novel electrochemical sensor based on RGO–PDA–cMWCNT was constructed to determine hydroquinone (HQ) and catechol (CT) simultaneously. This newly prepared nanocomposite shows excellent electrocatalytic efficacy in the electrode reaction of the two isomers. Specifically, the peak-to-peak potential difference between the two dihydroxybenzenes is 115 mV for oxidation, which is obviously larger than similar electrochemical sensors. The established method displays a wide linear range from 0.5 to 5000 μM with a detection limit (S/N = 3) of 0.066 μM for HQ and 0.073 μM for CT. In addition, this electrochemical approach has been tested to measure the two dihydroxybenzenes in real samples and satisfactory results were recorded. A novel reduced graphene oxide–polydopamine–carboxylated multi-walled carbon nanotube nanocomposite (RGO–PDA–cMWCNT) was fabricated for the sensitive and simultaneous determination of hydroquinone (HQ) and catechol (CT).![]()
Collapse
Affiliation(s)
- Fengxia Chang
- School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 P. R. China
| | - Hongyue Wang
- School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 P. R. China
| | - Shuai He
- School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 P. R. China
| | - Yu Gu
- School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 P. R. China
| | - Wenjie Zhu
- School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 P. R. China
| | - Tanwei Li
- School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 P. R. China
| | - Runhui Ma
- School of Chemistry and Environment, Southwest Minzu University Chengdu 610041 P. R. China
| |
Collapse
|
8
|
Coomassie brilliant blue G 250 modified carbon paste electrode sensor for the voltammetric detection of dihydroxybenzene isomers. Sci Rep 2021; 11:15933. [PMID: 34354155 PMCID: PMC8342535 DOI: 10.1038/s41598-021-95347-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
In this present study, coomassie brilliant blue G-250 (CBBG) modified electrode was fabricated for the specific and simultaneous detection of three dihydroxybenzene isomers such as resorcinol (RS), catechol (CC) and hydroquinone (HQ). The fabrication of the modified electrode was carried out by electrochemical polymerization of CBBG on the surface of unmodified electrode. The surface structures of bare and fabricated electrode were studied by scanning electron microscope (SEM). The established electrode portrays the very fine interface with these isomers and displayed the sufficient sensitivity and selectivity. The specific parameters of pH solution, scan rate and varying the concentration of analytes were optimized at the modified electrode. The sensor process was originated to be adsorption-controlled activity and the low limit of detection (LOD) for RS and CC was attained at 0.24 and 0.21 µM respectively. In the simultaneous study, designed sensor clearly implies the three well separated anodic peaks for RS, HQ and CC nevertheless in unmodified electrode it failed. Also, the constructed electrode was applied for the real sample analysis in tap water and obtained results are agreeable and it consistent in-between 92.80–99.48%.
Collapse
|
9
|
Chetankumar K, Kumara Swamy BE, Sharma SC, Hariprasad SA. An efficient electrochemical sensing of hazardous catechol and hydroquinone at direct green 6 decorated carbon paste electrode. Sci Rep 2021; 11:15064. [PMID: 34301960 PMCID: PMC8302748 DOI: 10.1038/s41598-021-93749-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
In this proposed work, direct green 6 (DG6) decorated carbon paste electrode (CPE) was fabricated for the efficient simultaneous and individual sensing of catechol (CA) and hydroquinone (HY). Electrochemical deeds of the CA and HY were carried out by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at poly-DG6-modfied carbon paste electrode (Po-DG6-MCPE). Using scanning electron microscopy (SEM) studied the surface property of unmodified CPE (UCPE) and Po-DG6-MCPE. The decorated sensor displayed admirable electrocatalytic performance with fine stability, reproducibility, selectivity, low limit of detection (LLOD) for HY (0.11 μM) and CC (0.09 μM) and sensor process was originated to be adsorption-controlled phenomena. The Po-DG6-MCPE sensor exhibits well separated two peaks for HY and CA in CV and DPV analysis with potential difference of 0.098 V. Subsequently, the sensor was practically applied for the analysis in tap water and it consistent in-between for CA 93.25–100.16% and for HY 97.25–99.87% respectively.
Collapse
Affiliation(s)
- K Chetankumar
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - B E Kumara Swamy
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Shivamogga, Karnataka, India.
| | - S C Sharma
- National Assessment and Accreditation Council (NAAC), Naagarabhaavi, Bengaluru, 560072, Karnataka, India. .,Jain University, Bengaluru, 560069, Karnataka, India. .,School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, India.
| | | |
Collapse
|
10
|
Ganesh PS, Shimoga G, Lee SH, Kim SY, Ebenso EE. Simultaneous electrochemical sensing of dihydroxy benzene isomers at cost-effective allura red polymeric film modified glassy carbon electrode. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00270-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers.
Methods
The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques.
Results
The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon.
Conclusions
The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed.
Graphical abstract
Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.
Collapse
|
11
|
Chetankumar K, Kumara Swamy B, Sharma S. Safranin amplified carbon paste electrode sensor for analysis of paracetamol and epinephrine in presence of folic acid and ascorbic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Talebizadehsardari P, Aramesh-Boroujeni Z, Foroughi M, Eyvazian A, Jahani S, Faramarzpour H, Borhani F, Ghazanfarabadi M, Shabani M, Nazari A. Synthesis of carnation-like Ho3+/Co3O4 nanoflowers as a modifier for electrochemical determination of chloramphenicol in eye drop. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Khalifa Z, Hassan K, Abo Oura MF, Hathoot A, Azzem MA. Individual and Simultaneous Voltammetric Determination of Ultra-Trace Environmental Contaminant Dihydroxybenzene Isomers Based on a Composite Electrode Sandwich-like Structure. ACS OMEGA 2020; 5:18950-18957. [PMID: 32775896 PMCID: PMC7408232 DOI: 10.1021/acsomega.0c02228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
An advanced electroanalytical technique for the simultaneous assessment of environmental contaminant dihydroxybenzene isomers, catechol (CC), hydroquinone (HQ), and resorcinol (RC), has been investigated using palladium nanoparticles (PdNPs) incorporated onto a poly(1,5-diaminonaphthalene) (DAN) matrix over a glassy carbon electrode (GCE). Concurrently, these types of phenols can be assessed by the PdDAN/GCE modified electrode employing square wave voltammetry and cyclic voltammetry (CV) techniques under optimal conditions. This modified electrode has demonstrated linear responses for CC, HQ, and RC from 50.0 to 1000.0 mM; concomitantly, low detection limits of 0.22, 0.22, and 0.47 nM and low quantification limits of 0.740, 0.758, and 1.590 nM, have been, respectively, shown. Successfully, the simultaneous assessment of the three isomers in river stream water, tap water, and underground water has been implemented via the modified electrode under investigation. In comparison to reported studies, the PdDAN catalytic electrode has shown an effective sensitivity, leverage reproducibility, long-term stability, and excellent anti-interference capability for the determination of dihydroxybenzene isomers.
Collapse
Affiliation(s)
- Ziad Khalifa
- Chemical
Engineering Department, Faculty of Engineering, The British University in Egypt, El Sherouk City 11837 Egypt
| | - Khalid Hassan
- Chemistry
Research Laboratory, Physics and Mathematics Engineering Department,
Faculty of Electronic Engineering, El-Menoufia
University, Menof 23952 Egypt
| | - Mohamed Fathi Abo Oura
- Department
of Chemistry, Faculty of Science, El-Menoufia
University, Shibin
El-Kom, Menoufia 32512 Egypt
| | - Abla Hathoot
- Department
of Chemistry, Faculty of Science, El-Menoufia
University, Shibin
El-Kom, Menoufia 32512 Egypt
| | - Magdi Abdel Azzem
- Department
of Chemistry, Faculty of Science, El-Menoufia
University, Shibin
El-Kom, Menoufia 32512 Egypt
| |
Collapse
|