1
|
Al-Senani GM, Abu Al-Ola KA, Al-Qahtani SD. Development of microfibrillated cellulose-reinforced carboxymethyl cellulose strip imprinted with benzotrifluoride-bearing hydrazone sensor for colorimetric detection of organophosphonates. Int J Biol Macromol 2024; 282:136674. [PMID: 39426769 DOI: 10.1016/j.ijbiomac.2024.136674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
The colorless and odorless nerve agents can cause paralysis and even death. The development of novel composite-based microporous strips has allowed for the rapid and visual detection of diisopropyl phosphorofluoridate (DIPF) nerve agent mimics. The active methyl-containing tricyanofuran and 4-aminobenzotrifluoride diazonium salt were azo-coupled in a straightforward manner to produce a new benzotrifluoride (BFT)-comprising tricyanofuran (TCF) hydrazone colorimetric probe. The molecular structure of the benzotrifluoride-bearing hydrazone (BFTH) was explored by different spectroscopic techniques. Microfibrillated cellulose (MFC) was produced using a green process from sugarcane bagasse, an agriculture waste that is notorious for being a solid pollution. Consequently, discovering a straightforward procedure to convert bagasse into valuable materials has been of utmost importance. MFC displayed diameters of 0.25-2 μm, whereas the sensory films exhibited pore diameters of 0.5-2.25 μm. Various quantities of the BFTH chromophore were used to create benzotrifluoride-bearing hydrazone/microfibrillated cellulose/carboxymethyl cellulose (BFTH/MFC@CMC) composites. The absorbance band of the hydrazone-immobilized composite increased from 435 nm to 580 nm as the content of DIPF was raised. When exposed to DIPF, the dipstick color shifted from orange to pink, according to the CIE Lab measurements. The sensor strip showed a detection limit to DIPF between 5 and 200 ppm.
Collapse
Affiliation(s)
- Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Khulood A Abu Al-Ola
- Chemistry Department, College of Sciences, Al-Madina Al-Munawarah, Taibah University, Al-Madina 30002, Saudi Arabia
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
2
|
Ilakiyalakshmi M, Dhanasekaran K, Napoleon AA. A Review on Recent Development of Phenothiazine-Based Chromogenic and Fluorogenic Sensors for the Detection of Cations, Anions, and Neutral Analytes. Top Curr Chem (Cham) 2024; 382:29. [PMID: 39237745 DOI: 10.1007/s41061-024-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
This review provides an in-depth examination of recent progress in the development of chemosensors, with a particular emphasis on colorimetric and fluorescent probes. It systematically explores various sensing mechanisms, including metal-to-ligand charge transfer (MLCT), ligand-to-metal charge transfer (LMCT), photoinduced electron transfer (PET), intramolecular charge transfer (ICT), and fluorescence resonance energy transfer (FRET), and elucidates the mechanism of action for cation and anion chemosensors. Special attention is given to phenothiazine-based fluorescence probes, highlighting their exceptional sensitivity and rapid detection abilities for a broad spectrum of analytes, including cations, anions, and small molecules. Phenothiazine chemosensors have emerged as versatile tools widely employed in a multitude of applications, spanning environmental and biomedical fields. Furthermore, it addresses existing challenges and offers insights into future research directions, aiming to facilitate the continued advancement of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Mohan Ilakiyalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kumudhavalli Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ayyakannu Arumugam Napoleon
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Xiao W, Zhang Q, You DH, Li NB, Zhou GM, Luo HQ. Construction of a novel flavonol fluorescent probe for copper (II) ion detection and its application in actual samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124175. [PMID: 38565051 DOI: 10.1016/j.saa.2024.124175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Copper is an essential trace element in the human body, and its level is directly related to many diseases. While the source of copper in human body is mainly intake from food, then the detection of copper ions (Cu2+) in food becomes crucial. Here, we synthesized a novel probe (E)-3-hydroxy-2-styryl-4H-benzo[h]chromen-4-one (NSHF) and explored the binding ability of NSHF for Cu2+ using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), high-resolution mass spectrometry (HRMS), Job's plot method and density functional theory (DFT). NSHF shows the advantages of fast response time, good selectivity and high sensitivity for Cu2+. The fluorescence intensity ratio (F/F0) of NSHF shows a good linear relationship with the concentration of Cu2+ and the detection limit is 0.061 μM. NSHF was successfully applied to the detection of Cu2+ in real samples. In addition, a simple and convenient Cu2+ detection platform was constructed by combining NSHF with a smartphone and a UV lamp, which can realize the rapid detection of Cu2+. This work provides an effective tool for the real-time detection of Cu2+.
Collapse
Affiliation(s)
- Wei Xiao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Hui You
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Guang Ming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
4
|
Al-Zahrani FAM, Abdel-Lateef MA. Synthesis and spectral characterization of the phenothiazine-thiosemicarbazide probe for the optical solid-state detection of Hg 2+ and Cu 2. RSC Adv 2024; 14:16982-16990. [PMID: 38799220 PMCID: PMC11123617 DOI: 10.1039/d3ra08624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
In this study, a phenothiazine-thiosemicarbazide (PTZDS) probe was synthesized and characterized. The synthesized PTZDS probe exhibited a yellow color, with a native fluorescence emission at λemission = 550 nm and λexcitation = 450 nm. Over other metal ions, the probe exhibited significant selectivity and sensitivity towards Hg2+ and Cu2+. The probe showed fluorescence quenching along with a minor shift in the absorbance spectra from 400 to 450 nm and 430 nm in the presence of Hg2+ and Cu2+, respectively. In addition, the color of the synthesized probe remarkedly faded with the addition of Hg2+ or Cu2+. Fluorescence measurements, infrared spectroscopy (IR), and density functional theory studies were employed to elucidate the binding process in the PTZDS + Cu2+ and PTZDS + Hg2+ sensor systems. Furthermore, photophysical investigations of the synthesized probe with Hg2+ and Cu2+ were performed. Finally, the probe was successfully employed as a solid-state thin layer chromatography (TLC) optical sensor for detecting Hg2+ and Cu2+ ions.
Collapse
Affiliation(s)
- Fatimah A M Al-Zahrani
- Chemistry Department, Faculty of Science, King Khalid University PO Box 9004 Abha 61413 Saudi Arabia
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| |
Collapse
|
5
|
Abu-Taweel GM, Al-Saidi HM, Alshareef M, Alhamami MAM, Algethami JS, Alharthi SS. Colorimetric Detection of Cu 2+ and Ag + Ions Using Multi-Responsive Schiff Base Chemosensor: A Versatile Approach for Environmental Monitoring. J Fluoresc 2023:10.1007/s10895-023-03512-9. [PMID: 38015296 DOI: 10.1007/s10895-023-03512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
In this study, we have synthesized a novel Schiff base-centered chemosensor, designated as SB, with the chemical name ((E)-1-(((6-methylbenzo[d]thiazol-2-yl) imino)methyl)naphthalen-2-ol). This chemosensor was structurally characterized by FT-IR, 1H NMR, UV-Vis and fluorescence spectroscopy. After structural characterization the chemosensor SB was subsequently employed for the detection of Cu2+ and Ag+, using fluorescence spectroscopy. The chemosensor SB showed excellent ability to recognize the target metal ions, leading to fluorescence enhancement and color change from yellow to yellowish orange for Cu2+ and yellow to radish for Ag+ ions. The detection capabilities of this chemosensor were impressive, showing excellent selectivity and an exceptionally low detection limit of 0.0016 µM for Cu2+ and 0.00389 µM for Ag+. Most notably, our approach enables the quantitative detection both metal ions in different water and soil samples at trace level. This achievement holds great promise for analytical applications and offers significant contributions to the field of chemical sensing and environmental protection.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Science, Jazan University, P.O. Box 2079, Jazan, 45142, Saudi Arabia
| | - Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Mubark Alshareef
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, 24230, Makkah, Saudi Arabia
| | - Mohsen A M Alhamami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, 11001, Najran, Saudi Arabia
| | - Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, 11001, Najran, Saudi Arabia.
- Advanced Materials and Nano-Research Centre (AMNRC), Najran University, 11001, Najran, Saudi Arabia.
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
6
|
Development in Fluorescent OFF-ON Probes Based on Cu 2+ Promoted Hydrolysis Reaction of the Picolinate Moiety. J Fluoresc 2023; 33:401-411. [PMID: 36480123 DOI: 10.1007/s10895-022-03078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Anions and cations have a key role in our normal life. Cu2+ ion is a crucial trace element accountable for the part of several cellular enzymes and proteins, including cytochrome c oxidase, dopamine monooxygenase, Cu/Zn superoxide dismutase, and ceruloplasmin. WHO has found the extreme acceptable level of Cu2+ ions in drinking water is up to 2.0 ppm. Excess use of Cu2+ ions is associated with various human genetic disorders. Thus, the visualization of Cu2+ ions to avoid its toxic effects in chemical and biological systems is significant. In this review we have summarized sensors based on catalytic hydrolysis of picolinate to detect Cu2+ ions. The sensors based on hydrolysis of picolinate are very selective as compared to the other sensors for Cu2+ ions detection. We have focused on describing the structure, spectral properties, detection limits, and bioimaging model of the sensors.
Collapse
|
7
|
Bejan A, Marin L. Outstanding Sorption of Copper (II) Ions on Porous Phenothiazine-Imine-Chitosan Materials. Gels 2023; 9:gels9020134. [PMID: 36826303 PMCID: PMC9957313 DOI: 10.3390/gels9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The aim of this work was to investigate the ability of a solid-state material, prepared by crosslinking chitosan with a phenothiazine-based aldehyde, to remove copper (II) ions from aqueous solutions, in a fast and selective manner. The metal uptake experiments, including the retention, sensibility, and selectivity against eight different metal ions, were realized via batch adsorption studies. The capacity of the material to retain copper (II) ions was investigated by spectrophotometric measurements, using poly(ethyleneimine) complexation agent, which allowed detection in a concentration range of 5-500 µM. The forces driving the copper sorption were monitored using various methods, such as FTIR spectroscopy, X-ray diffraction, SEM-EDAX technique, and optical polarized microscopy, and the adsorption kinetics were assessed by fitting the in vitro sorption data on different mathematical models. The phenothiazine-imine-chitosan material proved high ability to recover copper from aqueous media, reaching a maximum retention capacity of 4.394 g Cu (II)/g adsorbent when using a 0.5 M copper solution, which is an outstanding value compared to other chitosan-based materials reported in the literature to this date. It was concluded that the high ability of the studied xerogel to retain Cu (II) ions was the result of both physio- and chemo-sorption processes. This particular behavior was favored on one hand by the porous nature of the material and on the other hand by the presence of amine, hydroxyl, imine, and amide groups with the role of copper ligands.
Collapse
|
8
|
Lu X, Zhan Y, He W. Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112528. [PMID: 35907277 DOI: 10.1016/j.jphotobiol.2022.112528] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 05/20/2023]
Abstract
Fluorescence probes, as analytical tools with the ability to perform rapid and sensitive detection of target analytes, have made outstanding contributions to environmental analysis and bioassays. Considering the expanding developments in these areas, fluorophores play a key role in the de-sign of fluorescence probes. Compared to classical fluorophores, phenothiazines with elec-tron-rich characteristics have been widely applied to construct electron donor-acceptor dyes, which exhibit outstanding performance in both fluorimetric and colorimetric analysis. In addition, these probes also exhibit the pronounced ability in both solution and solid-state, achieving portable detection for environmental analysis. In this review, we summarize recent advances in the performance of phenothiazine-based fluorescent probes for detecting various analytes, especially in cations, anions, ROS/RSS, enzyme and other small molecules. The general design rules, response mechanisms and practical applications of the probes are analyzed, followed by a discussion of exiting challenges and future research perspectives. It is hoped that this review will provide a few strategies for the development of phenothiazine-based fluorescent probes.
Collapse
Affiliation(s)
- Xianlin Lu
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Yu Zhan
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China
| | - Wei He
- School of Pharmacy, The Air Force Medical University, Xi'an 710032, PR China.
| |
Collapse
|
9
|
Yang Z, Yuan Y, Xu X, Guo H, Yang F. An effective long-wavelength fluorescent sensor for Cu 2+ based on dibenzylidenehydrazine-bridged biphenylacrylonitrile. Anal Bioanal Chem 2022; 414:4707-4716. [PMID: 35562571 DOI: 10.1007/s00216-022-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
Although numerous fluorescence sensors for Cu2+ have been presented, a long-wavelength sensor in aqueous media has rarely been reported as expected due to practical application requirements. In this work, a novel AIE molecule (DHBB) containing two biphenylacrylonitrile units bridged by dibenzylidenehydrazine was prepared. It possessed the merits of long-wavelength emission, good emission in aqueous media, and multiple functional groups for binding Cu2+. It exhibited good sensing selectivity for Cu2+ among all kinds of tested metal ions. The detection limit was as low as 1.08 × 10-7 M. The sensing mechanism was clarified as 1:1 stoichiometric ratio based on the binding cooperation of O and N functional groups of DHBB. The selective sensing ability for Cu2+ remained stable at pH = 5-9 and was influenced little by other metal ions. The Cu2+ sensing ability of DHBB was applied in real samples with 96% recovery rate. The bio-imaging experiment of living cells suggested that DHBB possessed not only good bio-imaging performance but also sensing ability for Cu2+ in living environments. This work suggested the good application prospect of DHBB to sense Cu2+ in real samples and living environment.
Collapse
Affiliation(s)
- Zengwei Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Yufei Yuan
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China
| | - Xiangfei Xu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Hongyu Guo
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China.,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China
| | - Fafu Yang
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, 350007, People's Republic of China. .,Fujian Key Laboratory of Polymer Materials, Fuzhou, 350007, People's Republic of China. .,Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
10
|
Yin P, Ma W, Liu J, Hu T, Wei T, Chen J, Li T, Niu Q. Dual functional chemosensor for nano-level detection of Al3+ and Cu2+: Application to real samples analysis, colorimetric test strips and molecular logic gates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Ahmed N, Zareen W, Zhang D, Yang X, Ye Y. Irreversible coumarin based fluorescent probe for selective detection of Cu 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120313. [PMID: 34474223 DOI: 10.1016/j.saa.2021.120313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Copper ion (Cu2+) is an essential part of the living organisms. Cu2+ ions play a vital role in many biotic processes. An abnormal amount of Cu2+ ions may result in serious diseases. Herein, a novel "fluorescent ON" probe NC-Cu to trace minute levels of Cu2+ ions in presence of various biological active species has been developed. Lysosomal cells targeting group (Morpholine) was added to the probe. The spectral properties of probe NC-Cu were recorded in HEPES buffer (0.01 M, pH = 7.4, comprising 50% CH3CN, λex = 430 nm, slit: 5 nm). The synthesized probe NC-Cu work based on copper promoted catalytic hydrolysis of hydrazone and shows remarkable fluorescence enhancement. The reaction of the probe with Cu2+ ions was completed within 20 min. An excellent linear relationship (R2 = 0.9952) was found and the limit of detection (LOD, according to the 3σ/slope) for Cu2+ ions was calculated to be 5.8 µM. Furthermore, NC-Cu was effectively functional in the living cells (KYSE30 cells) to trace Cu2+ ions.
Collapse
Affiliation(s)
- Nadeem Ahmed
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wajeeha Zareen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Sivakumar R, Lee NY. Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00026-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Zhou A, Han S. An "off-on-off" fluorescence chemosensor for the sensitive detection of Cu 2+ in aqueous solution based on multiple fluorescence emission mechanisms. Analyst 2021; 146:2670-2678. [PMID: 33666205 DOI: 10.1039/d0an02472d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new organosiloxane precursor ((E)-3-hydroxy-4-((2-(2-hydroxy-4-(3-(3-(triethoxysilyl)propyl)ureido)benzoyl)hydrazono)methyl)phenyl(3-(triethoxysilyl)propyl)carbamate, hereinafter referred to as AHBH-Si) and tetraethylorthosilicate (TEOS) were mixed as the mixed Si source, and bridged periodic mesoporous organic silica (AHBH-PMOs) nanoparticles were obtained through the co-condensation reaction. AHBH-PMO nanoparticles possess mechanisms of "Aggregation Induced Emission" (AIE) and "Intramolecular Charge Transfer" (ICT), which originate from the molecular structure of AHBH having "C[double bond, length as m-dash]N" bond, ortho hydroxyl groups, etc.. Therefore, the optical properties of AHBH are excellent with respect to the solvent effect and enhanced fluorescence. For hybrid materials, the silica framework provides a rigid environment that restricts the rotation of AHBH, thereby turning on the fluorescence of AHBH due to the regulation by the AIE effect. In particular, AHBH-PMOs are no longer restricted by organic solvents and could really achieve the response to Cu2+ with high sensitivity and selectivity in aqueous solutions of a wide pH range. In addition, the detection limit is as low as 3.26 × 10-9 M. Methods such as Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry have shown the coordination interaction between AHBH and Cu2+. The Gaussian 09 software of density functional theory to calculate the reducing changes of energy gaps among AHBH and AHBH-Si before and after the addition of Cu2+ showed that coordination interaction exists in the system. These results indicate that AHBH-PMO hybrid materials have potential applications in the field of environmental monitoring.
Collapse
Affiliation(s)
- Aimei Zhou
- Key Lab of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Shuhua Han
- Key Lab of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
14
|
Synthesis and physicochemical characterization of Schiff bases used as optical sensor for metals detection in water. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Zuo Z, Tang Y, Lei F, Jin R, Yin P, Li Y, Niu Q. New thiophene hydrazide dual-functional chemosensor: Colorimetric sensor for Cu 2+ & fluorescent sensor for Al 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118712. [PMID: 32717524 DOI: 10.1016/j.saa.2020.118712] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
A new thiophene hydrazide derivative TSB was synthesized and utilized as naked-eye colorimetric sensor for Cu2+ by the color changed from colorless to yellow as well as green fluorescent turn on sensor for Al3+ in DMSO/H2O (1/1, V/V) solution. The dual-functional chemosensor TSB for Cu2+/Al3+ sensing displayed excellent properties of special selectivity, superior sensitivity, outstanding anti-interference performance, instantaneous response, wide pH working range and good reversibility. The detection limits of TSB for Cu2+/Al3+ were determined as low as 46.5 nM and 32.7 nM, respectively. The 1:1 binding mode of TSB with Cu2+/Al3+ was proved by spectrometric titrations, Job's plots, FTIR, 1H NMR and HRMS analysis. Moreover, chemosensor TSB was successfully utilized for detection of Cu2+ and Al3+ in real environmental water and food samples with high reliability, demonstrating its practical applicability.
Collapse
Affiliation(s)
- Zhenyu Zuo
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China.
| | - Yuping Tang
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
| | - Ruyi Jin
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, People's Republic of China
| | - Pengcheng Yin
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Yang Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China
| | - Qingfen Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.
| |
Collapse
|
16
|
Rapid and sensitive detection of hypochlorite in ~100% aqueous solution using a bithiophene-based fluorescent sensor: Application to water analysis and live-cell imaging. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
A new aggregation-induced emission active red-emitting fluorescent sensor for ultrarapidly, selectively and sensitively detecting hydrazine and its multiple applications. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|