1
|
Qin M, Li D, Zhu J, Lou X, Tian X, Ma W, Zhang N, Lu M. MOF-derived porous carbon microspheres Ni@C-acid as solid-phase microextraction coating for extraction of polycyclic aromatic hydrocarbons from tea infusions. J Chromatogr A 2024; 1726:464961. [PMID: 38723491 DOI: 10.1016/j.chroma.2024.464961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
The improvement of the stability and adsorption properties of materials on targets in sample pre-treatment has long been an objective. Extensive efforts have been made to achieve this goal. In this work, metal-organic framework Ni-MOF precursors were first synthesized by solvothermal method using polyvinylpyrrolidone (PVP) as an ideal templating agent, stabiliser and nanoparticle dispersant. After carbonization and acid washing, the nanoporous carbon microspheres material (Ni@C-acid) was obtained. Compared with the material without acid treatment (Ni@C), the specific surface area, pore volume, adsorption performance of Ni@C-acid were increased. Thanks to its excellent characteristics (high stability, abundant benzene rings), Ni@C-acid was used as fiber coatings in headspace solid-phase microextraction (HS-SPME) technology for extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) prior to gas chromatography-flame ionization detector (GC-FID) analysis. The experimental parameters of extraction temperature, extraction time, agitation speed, desorption temperature, desorption time and sodium chloride (NaCl) concentration were studied. Under optimal experimental conditions, the wide linear range (0.01-30 ng mL-1), the good correlation coefficient (0.9916-0.9984), the low detection limit (0.003-0.011 ng mL-1), and the high enrichment factor (5273-13793) were obtained. The established method was successfully used for the detection of trace PAHs in actual tea infusions samples and satisfied recoveries ranging from 80.94-118.62 % were achieved. The present work provides a simple method for the preparation of highly stable and adsorbable porous carbon microsphere materials with potential applications in the extraction of environmental pollutants.
Collapse
Affiliation(s)
- Mengjie Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dongxue Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wende Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Lan Z, Huang J, Fu S, Chen Y, Meng T, Zhou W, Xu Z, Chen M, Wen L, Cheng Y, Ding L. Length-controlled hydrophobic CF 3-COF as a highly efficient absorbent coating for dual-mode solid-phase microextraction of sixteen polycyclic aromatic hydrocarbons in water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171726. [PMID: 38492591 DOI: 10.1016/j.scitotenv.2024.171726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), a group of seriously hazardous environmental contaminants, have attracted extensive attention due to their carcinogenicity, genotoxicity, mutagenicity, and ubiquity. In this work, the excellent hydrophobic trifluoromethyl-enriched covalent organic framework (CF3-COF) was designed and synthesized as coating of solid-phase microextraction (SPME). The CF3-COF offered a high adsorption selectivity for PAHs, which could be attributed to the multiple interactions between the CF3-COF and PAHs, including hydrophobicity interaction, π-π and H bond interactions. Furthermore, headspace (HS) and direct immersion (DI) dual-mode solid-phase microextraction (HS/DI-SPME) were innovatively integrated as a dual-mode extraction by varying the length of SPME coating on stainless-steel, which could simultaneously and efficiently extract 16 PAHs with different volatile. Amazingly, the proposed strategy achieved fast adsorption for PAHs and shortened the adsorption equilibrium time to 15 min. By further integrating with gas chromatography tandem mass spectrometry (GC-MS/MS), PAHs could be detected in the range of 0.008-0.16 ng mL-1 with a quantitative limit of 0.029-0.47 ng mL-1, respectively. The recoveries of PAHs in water samples ranged from 80.84 to 117.67 %. This work indicates that the dual-mode CF3-COF-SPME is a promising candidate for the enrichment of multiple hazardous substances in complicated samples.
Collapse
Affiliation(s)
- Zirong Lan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Jin Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Shanliang Fu
- Hunan Key Laboratory of Food Safety Science and Technology, Changsha Customs, Changsha 410004, PR China
| | - Youwei Chen
- Technical Center, Tianjin Customs, Tianjin 300041, PR China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China.
| |
Collapse
|
3
|
Xu S, Li H, Xiao L, Wang M, Feng S, Fan J, Pawliszyn J. Quantitative Determination of Poly(methyl Methacrylate) Micro/Nanoplastics by Cooling-Assisted Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry: Theoretical and Experimental Insights. Anal Chem 2024; 96:2227-2235. [PMID: 38272489 DOI: 10.1021/acs.analchem.3c05316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Determinations of micro/nanoplastics (MNPs) in environmental samples are essential to assess the extent of their presence in the environment and their potential impact on ecosystems and human health. With the aim to provide a sensitive method with simplified pretreatment steps, cooling-assisted solid-phase microextraction (CA-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) is proposed as a new approach to quantify mass concentrations of MNPs in water and soil samples. The herein proposed CA-SPME method offers the unique advantage of integrating the thermal decomposition of MNPs and enrichment of signature compounds into one step. Poly(methyl methacrylate) (PMMA) was used as a model substance to verify the method performance in this work. Theoretical insights demonstrated that pyrolysis is the rate-determining step during the extraction process and that PMMA is effectively decomposed at 350 °C with an estimated incubation time of 13 min. Eight compounds were identified in the pyrolysis products by CA-SPME-GC-MS with the use of a DVB/CAR/PDMS coating, wherein methyl methacrylate was considered as the best indicator and dimethyl 2-methylenesuccinate was selected as the confirmation compound. Under the optimized conditions, the proposed method exhibited wide linearity (0.5-2000 μg for water and 5-1000 μg for soil) and high sensitivity, with limits of detection of 0.014 and 0.28 μg for water and soil, respectively. Finally, the proposed method was successfully applied for determinations of PMMA MNPs in real water and soil samples with satisfactory recoveries attained. The method only required the employment of a filter membrane for water analysis, while soil samples were analyzed directly without any pretreatment. The solvent-free approach, straightforward operation, and high sensitivity of the proposed method show great potential for the analysis of MNPs in different environmental samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Li Xiao
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, P. R. China
| | - Miaomiao Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, P. R. China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Adib F, Afshar Mogaddam MR, Nemati M, Farajzadeh MA, Mohebbi A, Alizadeh Nabil AA. Surfactant-enhanced air-agitation liquid-liquid microextraction of polycyclic aromatic hydrocarbons from edible oil using magnetic deep eutectic solvent prior to HPLC determination. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5655-5665. [PMID: 37855170 DOI: 10.1039/d3ay01437a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Herein, an air-agitation liquid-liquid microextraction procedure was developed for the extraction of several polycyclic aromatic hydrocarbons from edible oil samples. In this study, the extraction procedure was achieved using a new magnetic deep eutectic solvent as the extraction solvent, in which there was no need for centrifugation. To enhance the rate of extraction of the analytes from the samples, the method was promoted by the use of surfactant addition. The extracted analytes were determined by high-performance liquid chromatography with a diode array detector. The influence of various parameters on the extraction efficiency was studied by response surface methodology using a central composite design. Under optimal conditions, linear calibration curves for the target analytes were achieved in the range of 0.43-250 ng g-1. The limits of detection and quantification were in the ranges of 0.04-0.13 and 0.13-0.43 ng g-1, respectively. The repeatability of the method in terms of intra- and inter-day precision was ≤4.7% and ≤6.7%, respectively. The extraction recovery of the method ranged from 75 to 88%. The obtained results show that the proposed method is efficient for the analysis of the target analytes in various oil samples without obvious matrix effects. Pyrene was found in olive oil at a concentration of 42 ng g-1.
Collapse
Affiliation(s)
- Fariba Adib
- Department of Food and Drug Control, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahboob Nemati
- Department of Food and Drug Control, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Mohebbi
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| | | |
Collapse
|
5
|
Song N, Tian Y, Luo Z, Dai J, Liu Y, Duan Y. Advances in pretreatment and analysis methods of aromatic hydrocarbons in soil. RSC Adv 2022; 12:6099-6113. [PMID: 35424557 PMCID: PMC8981609 DOI: 10.1039/d1ra08633b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Benzene compounds that are prevalent in the soil as organic pollutants mainly include BTEX (benzene, toluene, ethylbenzene, and three xylene isomers) and PAHs (polycyclic aromatic hydrocarbons). These pose a severe threat to many aspects of human health. Therefore, the accurate measurement of BTEX and PAHs concentrations in the soil is of great importance. The samples for analysis of BTEX and PAHs need to be suitable for the various detection methods after pretreatment, which include Soxhlet extraction, ultrasonic extraction, solid-phase microextraction, supercritical extraction, and needle trap. The detection techniques mainly consist of gas chromatography (GC), mass spectrometry (MS), and online sensors, and provide comprehensive information on contaminants in the soil. Their performance is evaluated in terms of sensitivity, selectivity, and recovery. Recently, there has been rapid progress in the pretreatment and analysis methods for the quantitative and qualitative analyses of BTEX and PAHs. Therefore, it is necessary to produce a timely and in-depth review of the emerging pretreatment and analysis methods, which is unfortunately absent from the recent literature. In this work, state-of-art extraction techniques and analytical methods have been summarized for the determination of BTEX and PAHs in soil, with a particular focus on the potential and limitations of the respective methods for different aromatic hydrocarbons. Accordingly, the paper will describe the basic methodological knowledge, as well as the recent advancement of pretreatment and analysis methods for samples containing BTEX and PAHs.
Collapse
Affiliation(s)
- Na Song
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Jianxiong Dai
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yan Liu
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| |
Collapse
|
6
|
Delińska K, Rakowska PW, Kloskowski A. Porous material-based sorbent coatings in solid-phase microextraction technique: Recent trends and future perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Li H, Hou B, Wang L, Zang X, Wang C, Wang Z. Boron nitride modified reduced graphene oxide as solid-phase microextraction coating material for the extraction of seven polycyclic aromatic hydrocarbons from water and soil samples. J Sep Sci 2021; 44:1521-1528. [PMID: 33511696 DOI: 10.1002/jssc.202001088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023]
Abstract
A novel hexagonal boron nitride modified reduced graphene oxide material was synthesized and used as the adsorbent for the solid-phase microextraction of seven polycyclic aromatic hydrocarbons from water and soil samples prior to their detection by gas chromatography-flame ionization detector. Under optimal conditions, the linear response range of the analytes for water sample is 0.25-50 ng/mL with the correlation coefficients (r) ranging between 0.9953 and 0.9996. The linear range for soil sample is 1.0-400 ng/g with r ranging from 0.9959 to 0.9999. On the basis of the signal-to-noise ratio of 3, the limits of detections for the analytes ranged from 0.05 to 0.15 ng/mL for water samples, and from 0.3 to 0.5 ng/g for soil samples. The relative recoveries of the seven polycyclic aromatic hydrocarbons for water and soil samples were in the range of 79.55-120.0 and 78.76-120.8%, respectively. The relative standard deviations for the determination of the analytes in water and soil samples were lower than 11 and 10%, respectively. The method is simple and suitable for the determination of polycyclic aromatic hydrocarbon residues in water and soil samples.
Collapse
Affiliation(s)
- Hongda Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Baoxiu Hou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Ling Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| |
Collapse
|