1
|
Bioanalytical LC-MS/MS method for simultaneous estimation of atorvastatin, its major active metabolites and ezetimibe. Bioanalysis 2022; 14:1349-1363. [PMID: 36621870 DOI: 10.4155/bio-2022-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Hyperlipidemia is one of the most common chronic diseases encountered globally, and atorvastatin (ATV) is mainly metabolized into two major active metabolites. Methodology: Hence, we aimed to estimate ATV and ezetimibe (EZE) simultaneously in the presence of ATV major and active metabolites using a validated LC-MS/MS method. Conclusion: The proposed method was linear (r2 >0.99), accurate (92.02-109.94%) and precise (CV% ≤14) over the concentration range of 0.50-120 ng/ml, 0.20-48 ng/ml, 0.50-120 ng/ml and 0.20-48 ng/ml for ATV, EZE, 2-hydroxy ATV and 4-hydroxy ATV, respectively. The applied liquid-liquid extraction gave rise to reliable extraction recoveries of 84.91 ± 1.14%, 85.20 ± 1.62%, 85.46 ± 0.41% and 105.46 ± 2.35% for ATV, EZE, 2-hydroxy ATV and 4-hydroxy ATV, respectively.
Collapse
|
2
|
Li S, Li Z, Li H, Zhong C, Huang K, Chen B, Huang L, Lin X, Liu Q, Yao H. Synthesis, biological evaluation, pharmacokinetic studies and molecular docking of 4'''-acetyl-delicaflavone as antitumor agents. Bioorg Chem 2022; 120:105638. [PMID: 35121550 DOI: 10.1016/j.bioorg.2022.105638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/09/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Structural modification of natural products is the effective option to improve their pharmacological effects and drug properties. DLF is a lead compound of antitumor drug, which is a broad-spectrum, low toxic and high-efficient component isolated from Selaginella doederleinii Hieron by our research group. Here, we report the structural modification method of this component, and find that the acetylated product of C4'''- OH (C4'''-acetyl-delicaflavone, 4'''ADLF) has better inhibitory effect on the selected cancer cell lines, including, lung, liver, colon and cervical cancer cell lines. Since the increased water solubility of 4'''ADLF may lead to higher absorption rate and activity, we evaluate the pharmacodynamics in vitro and in vivo, and the pharmacokinetic of 4'''ADLF. It shows that 4'''ADLF inhibit the proliferation and induce cycle arrest in tumor cells, and had better anticancer activity and bioavailability than DLF.
Collapse
Affiliation(s)
- Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, People's Republic of China; Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, People's Republic of China.
| | - Zhijun Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Hui Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, People's Republic of China; Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Kunlong Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, People's Republic of China; Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, People's Republic of China; Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, People's Republic of China; Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, People's Republic of China.
| | - Qicai Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, People's Republic of China; Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, People's Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, People's Republic of China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, People's Republic of China; Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou 350122, People's Republic of China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou 350122, People's Republic of China.
| |
Collapse
|
3
|
Elashery SEA, Attia NF, Mohamed GG, Omar MM, Tayea HMI. Hybrid Nanocomposite Based Graphene Sensor for Ultrasensitive Clomipramine HCl Detection. ELECTROANAL 2021. [DOI: 10.1002/elan.202100165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sally E. A. Elashery
- Chemistry Department Faculty of Science Cairo University Gamaa Str. 12613 Giza Egypt
| | - Nour F. Attia
- Fire Protection Laboratory Chemistry Division National Institute for Standards 136 12211 Giza Egypt
| | - Gehad G. Mohamed
- Chemistry Department Faculty of Science Cairo University Gamaa Str. 12613 Giza Egypt
| | - M. M. Omar
- Chemistry Department Faculty of Science Cairo University Gamaa Str. 12613 Giza Egypt
| | - Hager M. I. Tayea
- Chemistry Department Faculty of Science Cairo University Gamaa Str. 12613 Giza Egypt
| |
Collapse
|
4
|
Aklillu E, Engidawork E. The impact of catha edulis (vahl) forssk. ex endl. (celestraceae) (khat) on pharmacokinetics of clinically used drugs. Expert Opin Drug Metab Toxicol 2021; 17:1125-1138. [PMID: 34410209 DOI: 10.1080/17425255.2021.1971194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Catha edulis (Vahl) Forssk. ex Endl. (Celestraceae) is used as a recreational drug on daily basis for its euphoric and psychostimulant effects. It is also chewed by individuals who are on medications, raising the possibility of drug-khat interaction. However, limited data are available in the literature, although clinically significant interactions are expected, as khat contains a complex mixture of pharmacologically active constituents. AREAS COVERED It provides an overview of the phytochemistry, pharmacokinetics, pharmacodynamics, and pharmacogenetics of khat based on the literature mined from PubMed, Google Scholar, and Cochrane databases. It also presents a detailed account of drug-khat interactions with specific examples and their clinical significance. The interactions mainly occur at the pharmacokinetics level and particular attention is paid for the phases of absorption and cytochrome P450 enzyme-mediated metabolism. EXPERT OPINION Despite the increasing trend of khat chewing with medications among the populace and the potential risk for the occurrence of clinically significant interactions, there is paucity of data in the literature demonstrating the magnitude of the risk. The available data, however, clearly demonstrate that the consequence of drug-khat interaction is dependent on genotype. Genotyping, where feasible, could be used to improve clinical outcome and minimize adverse reactions.
Collapse
Affiliation(s)
- Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Lim SYM, Alshagga MA, Alshawsh MA, Ong CE, Pan Y. In vitro effects of 95% khat ethanol extract (KEE) on human recombinant cytochrome P450 (CYP)1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5. Drug Metab Pers Ther 2021; 37:55-67. [PMID: 35146975 DOI: 10.1515/dmpt-2021-1000196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Khat, a natural amphetamine-like psychostimulant plant, are widely consumed globally. Concurrent intake of khat and xenobiotics may lead to herb-drug interactions and adverse drug reactions (ADRs). This study is a continuation of our previous study, targeted to evaluate the in vitro inhibitory effects of khat ethanol extract (KEE) on human cytochrome (CYP) 1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5, major human drug metabolizing enzymes. METHODS In vitro fluorescence enzyme assays were employed to assess CYPs inhibition with the presence and absence of various KEE concentrations. RESULTS KEE reversibly inhibited CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 but not CYP1A2 with IC50 values of 25.5, 99, 4.5, 21, 27, 17, and 10 μg/mL respectively. No irreversible inhibition of KEE on all the eight CYPs were identified. The Ki values of CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were 20.9, 85, 4.8, 18.3, 59.3, 3, and 21.7 μg/mL, respectively. KEE inhibited CYP2B6 via competitive or mixed inhibition; CYP2E1 via un-competitive or mixed inhibition; while CYP2A6, CYP2C8, CYP2C19, CYP2J2 and CYP3A5 via non-competitive or mixed inhibition. CONCLUSIONS Caution should be taken by khat users who are on medications metabolized by CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Mustafa Ahmed Alshagga
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | | | - Chin Eng Ong
- School of Pharmacy, International Medical University, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Yan Pan
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
Sayed RA, El-Alfy W, Ismaiel OA, El-Mammli MY, Shalaby A. Non-extractive spectrophotometric determination of memantine HCl, clomipramine HCl and fluvoxamine maleate in pure form and in pharmaceutical products by ion-pair complex formation with rose bengal. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 79:375-386. [PMID: 33309604 DOI: 10.1016/j.pharma.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The objective of this work is to develop a simple, sensitive and non-extractive spectrophotometric method for the determination of memantine HCl (MEM), clomipramine HCl (CLM) and fluvoxamine maleate (FLV). MATERIAL AND METHODS The proposed method was based on the formation of colored ion-pair complexes between the basic nitrogen of the target drugs and rose bengal (RB) dye in a weak acidic medium. RESULTS The formed complexes were measured at 576nm for MEM, CLM and at 575nm for FLV. The reaction conditions were optimized to obtain the maximum color intensity. Beer's law was obeyed in the range of 2-20, 1-16 and 6-30μg/mL for MEM, CLM and FLV, respectively. The limit of detection (LOD) was 0.476, 0.185, 0.806 and the limit of quantitation (LOQ) was 1.443, 0.559 and 2.443 for MEM, CLM and FLV, respectively. The composition ratio of the ion-pair complexes was found to be 1:1 as determined by Job's method. CONCLUSION The proposed method was applied successfully for the analysis of the cited drugs in pure and dosage forms. Results of the proposed method were statistically compared with the reported methods by applying student's t- and F-tests and no significant differences were observed.
Collapse
Affiliation(s)
- R A Sayed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - W El-Alfy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - O A Ismaiel
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - M Y El-Mammli
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - A Shalaby
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
7
|
Impacts of Drug Interactions on Pharmacokinetics and the Brain Transporters: A Recent Review of Natural Compound-Drug Interactions in Brain Disorders. Int J Mol Sci 2021; 22:ijms22041809. [PMID: 33670407 PMCID: PMC7917745 DOI: 10.3390/ijms22041809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Natural compounds such as herbal medicines and/or phyto-compounds from foods, have frequently been used to exert synergistic therapeutic effects with anti-brain disorder drugs, supplement the effects of nutrients, and boost the immune system. However, co-administration of natural compounds with the drugs can cause synergistic toxicity or impeditive drug interactions due to changes in pharmacokinetic properties (e.g., absorption, metabolism, and excretion) and various drug transporters, particularly brain transporters. In this review, natural compound–drug interactions (NDIs), which can occur during the treatment of brain disorders, are emphasized from the perspective of pharmacokinetics and cellular transport. In addition, the challenges emanating from NDIs and recent approaches are discussed.
Collapse
|