1
|
Liu X, Li Y, Qiao W, Chang M, Li Y. A non-enzymatic electrochemical sensor based on nitrogen-doped mesoporous carbon@hydroxyl-functionalized ionic liquid composites modified electrode for the detection of fenitrothion. RSC Adv 2023; 13:13030-13039. [PMID: 37124009 PMCID: PMC10133836 DOI: 10.1039/d3ra01011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
The overuse of organophosphorus pesticides (OPs) results in severe environmental pollution and food safety issues. Fenitrothion (FNT) is a typical derivative of OPs, so rapid and sensitive detection of FNT plays an important role in environmental protection and public health. An FNT non-enzymatic electrochemical sensor based on nitrogen-doped mesoporous carbon@functionalized ionic liquid composites (N-CMK-3@IL) was constructed in this work. The surface topography and electrochemical properties of the sensor were investigated by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. Because N-CMK-3@IL composites could improve the conductivity and increase the active surface area of the modified electrode, the sensor exhibited good electrocatalytic activity to FNT. Under the optimal experimental conditions, a good linear relationship for FNT was obtained in the range of 0.5-100 ng mL-1, and the detection limit was 0.1 ng mL-1 (S/N = 3). The sensor was successfully applied for the detection of FNT in vegetable samples.
Collapse
Affiliation(s)
- Xinsheng Liu
- School of Basic Medical Sciences, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-6980139 +86-951-6980139
| | - Yutong Li
- School of Public Health, Ningxia Medical University Yinchuan 750004 P. R. China
| | - Wenli Qiao
- School of Public Health, Ningxia Medical University Yinchuan 750004 P. R. China
| | - Mengjun Chang
- School of Public Health, Ningxia Medical University Yinchuan 750004 P. R. China
| | - Yonghong Li
- School of Public Health, Ningxia Medical University Yinchuan 750004 P. R. China
- Key Laboratory of Environmental Factors and Chronic Disease Control Yinchuan 750004 P. R. China
| |
Collapse
|
2
|
Zaeifi F, Sedaghati F, Samari F. A new electrochemical sensor based on green synthesized CuO nanostructures modified carbon ionic liquid electrode for electrocatalytic oxidation and monitoring of l-cysteine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Selcuk O, Unal DN, Kanbes Dindar Ç, Süslü İ, Uslu B. Electrochemical determination of phosphodiesterase-3 enzyme inhibitor drug Milrinone with nanodiamond modified paste electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Yang Y, Pang J, Li Y, Sun L, Zhang H, Zhang L, Xu S, Jiang T. Fabrication of a Stable Europium-Based Luminescent Sensor for Fast Detection of Urinary 1-Hydroxypyrene Constructed from a Tetracarboxylate Ligand. Inorg Chem 2021; 60:19189-19196. [PMID: 34865486 DOI: 10.1021/acs.inorgchem.1c02988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel europium-centered metal-organic framework fabricated from a symmetric and rigid ligand with tetracarboxylate groups, 2,6-di(2',5'-dicarboxylphenyl)pyridine (H4ddpp), has been synthesized solvothermally. Characterized by single-crystal X-ray diffraction, compound 1 features a 3D microporous structure with a butterfly-shaped trinuclear Eu3(COO)6 secondary building unit. Interestingly, three kinds of 1D open channels viewed in different directions in compound 1 are discovered, and the void ratio is calculated to be 47.5% by PLATON software. Solid-state luminescent experiments at 298 K reveal that compound 1 displays naked-eye characteristic red emission of Eu3+ ions monitoring the typical 5D0 → 7F2 transition. The exploration of luminescent sensing tests discloses that compound 1 has an outstanding capacity for recognizing urinary 1-hydroxypyrene (1-HP) with a quite fast response and high sensitivity, giving the quenching efficiency of 98.2% after the immersion time for just 1 min and 73.2% with the amount of 1-HP only 0.05 mg/mL. To our knowledge, it is the first reported Eu-MOF as an extremely fast-responsive and highly sensitive luminescent sensor for 1-HP which is interference-free from other urinary components. Furthermore, the successful preparation of the luminescent test papers makes compound 1 convenient, easy, and real-time in the application for sensing 1-HP in biomedical and biological fields.
Collapse
Affiliation(s)
- Yan Yang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Jiandong Pang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yunwu Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Lei Sun
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Hao Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Luyao Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Shuting Xu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Taiwen Jiang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
5
|
Voltammetric detection of sumatriptan in the presence of naproxen using Fe 3O 4@ZIF-8 nanoparticles modified screen printed graphite electrode. Sci Rep 2021; 11:24068. [PMID: 34912041 PMCID: PMC8674320 DOI: 10.1038/s41598-021-98598-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/07/2021] [Indexed: 11/28/2022] Open
Abstract
A novel electrochemical sensing platform was designed and prepared for the simultaneous detection of sumatriptan and naproxen by exploiting the prowess of the Fe3O4@ZIF-8 nanoparticles (NPs); as-synthesized Fe3O4@ZIF-8 NPs were characterized by energy-dispersive X-ray spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FESEM), transmission electron microscopy and thermal gravimetric analysis. The immobilized Fe3O4@ZIF-8 NPs on a screen printed graphite electrode (SPGE) was evaluated electrochemically via cyclic voltammetry, linear sweep voltammetry, and differential pulse voltammetry as well as chronoamprometery means; Fe3O4@ZIF-8/SPGE exhibited good sensing performance for sumatriptan in a range of 0.035–475.0 µM with detection limit of 0.012 µM. Also, Fe3O4@ZIF-8/SPGE exhibited good sensing performance for naproxen in a range of 0.1–700.0 µM with detection limit of 0.03 µM. The modified electrode showed two separate oxidative peaks at 620 mV for sumatriptan and at 830 mV for naproxen with a peak potential separation of 210 mV which was large enough to detect the two drugs simultaneously besides being stable in the long-run with considerable reproducibility. Real sample analyses were carried out to identify the function of fabricated electrode in sensing applications wherein trace amounts of sumatriptan and naproxen could be identified in these samples.
Collapse
|
6
|
Cui H, Cui S, Tian Q, Zhang S, Wang M, Zhang P, Liu Y, Zhang J, Li X. Electrochemical Sensor for the Detection of 1-Hydroxypyrene Based on Composites of PAMAM-Regulated Chromium-Centered Metal-Organic Framework Nanoparticles and Graphene Oxide. ACS OMEGA 2021; 6:31184-31195. [PMID: 34841161 PMCID: PMC8613871 DOI: 10.1021/acsomega.1c04765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 05/31/2023]
Abstract
A nanocomposite was formed by combining graphene oxide (GO) with chromium-centered metal-organic framework (Cr-MOF) nanoparticles regulated by the dendrimer polyamidoamine (PAMAM). PAMAM can successfully regulate the synthesis of Cr-MOF; in doing so, the size of Cr-MOF is reduced, its original morphology is maintained, and it has good crystallinity. A simple ultrasonication method was used to make the Cr-MOF/GO hybrid nanocomposite. Various characterization methods confirmed the successful synthesis of PAMAM/Cr-MOF/GO nanocomposites. The PAMAM/Cr-MOF/ERGO modified electrode could be used with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) to study the electrochemical behaviors of 1-hydroxypyrene (1-OHPyr). The results indicated that the constructed PAMAM/Cr-MOF/ERGO electrochemical sensor had a significantly enhanced electrocatalytic effect on the electrochemical reduction of 1-OHPyr compared with the sensors with no PAMAM and the ERGO sensor, which could be ascribed to the synergetic effect from the high porosity of Cr-MOF and the high conductivity of ERGO, as well as the further electron transport action of the nanocomposite. Under the optimal conditions, the reduction peak current and concentration of 1-OHPyr showed a good linear relationship in the range of 0.1-1.0 and 1.0-6.0 μM, and the detection limit of 1-OHPyr was calculated to be 0.075 μM. Moreover, the PAMAM/Cr-MOF/ERGO electrochemical sensor constructed in this paper can be expected to provide some instructions for the construction of electrochemical sensing platforms and wider potential applications.
Collapse
Affiliation(s)
- Hong Cui
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Shuaishuai Cui
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Qiuju Tian
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Siyuan Zhang
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Mingxiu Wang
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Ping Zhang
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Yunfeng Liu
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Jialing Zhang
- School
of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, China
| | - Xiangjun Li
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
7
|
Evtyugin GA, Porfir’eva AV. Determination of Organic Compounds in Aqueous–Organic and Dispersed Media Using Electrochemical Methods of Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
ZIF-8/electro-reduced graphene oxide nanocomposite for highly electrocatalytic oxidation of hydrazine in industrial wastewater. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Tajik S, Beitollahi H, Hosseinzadeh R, Aghaei Afshar A, Varma RS, Jang HW, Shokouhimehr M. Electrochemical Detection of Hydrazine by Carbon Paste Electrode Modified with Ferrocene Derivatives, Ionic Liquid, and CoS 2-Carbon Nanotube Nanocomposite. ACS OMEGA 2021; 6:4641-4648. [PMID: 33644570 PMCID: PMC7905812 DOI: 10.1021/acsomega.0c05306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 05/05/2023]
Abstract
The electrocatalytic performance of carbon paste electrode (CPE) modified with ferrocene-derivative (ethyl2-(4-ferrocenyl[1,2,3]triazol-1-yl)acetate), ionic liquid (n-hexyl-3-methylimidazolium hexafluorophosphate), and CoS2-carbon nanotube nanocomposite (EFTA/IL/CoS2-CNT/CPE) was investigated for the electrocatalytic detection of hydrazine. CoS2-CNT nanocomposite was characterized by field emission scanning electron microscopy, X-ray powder diffraction, and transmission electron microscopy. According to the results of cyclic voltammetry, the EFTA/IL/CoS2-CNT-integrated CPE has been accompanied by greater catalytic activities for hydrazine oxidation compared to the other electrodes in phosphate buffer solution at a pH 7.0 as a result of the synergistic impact of fused ferrocene-derivative, IL, and nanocomposite. The sensor responded linearly with increasing concentration of hydrazine from 0.03 to 500.0 μM with a higher sensitivity (0.073 μA μM-1) and lower limit of detection (LOD, 0.015 μM). Furthermore, reasonable reproducibility, lengthy stability, and excellent selectivity were also attained for the proposed sensor. Finally, EFTA/IL/CoS2-CNT/CPE was applied for the detection of hydrazine in water samples, and good recoveries varied from 96.7 to 103.0%.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center
for Tropical and Infectious Diseases, Kerman
University of Medical Sciences, Kerman 7617934111, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High
Technology and Environmental Sciences, Graduate
University of Advanced Technology, Kerman 7631818356, Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-1467, Iran
| | - Abbas Aghaei Afshar
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 1234, Iran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies
and Materials, Palacky University, Š lechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research
Institute of Advanced Materials, Seoul National
University, Seoul 08826, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research
Institute of Advanced Materials, Seoul National
University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Zainal PNS, Alang Ahmad SA, Abdul Aziz SFN, Rosly NZ. Polycyclic Aromatic Hydrocarbons: Occurrence, Electroanalysis, Challenges, and Future Outlooks. Crit Rev Anal Chem 2020; 52:878-896. [PMID: 33155481 DOI: 10.1080/10408347.2020.1839736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The past several decades have seen increasing concern regarding the wide distribution of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices. Primary toxicological data show PAHs' persistent characteristics and possible toxicity effects. Because of this pressing global issue, electroanalytical methods have been introduced. These methods are effective for PAH determination in environmental waters, even outclassing sophisticated analytical techniques such as chromatography, conventional spectrophotometry, fluorescence, and capillary electrophoresis. Herein, the literature published on PAHs is reviewed and discussed with special regard to PAH occurrence. Moreover, the recent developments in electrochemical sensors for PAH determination and the challenges and future outlooks in this field, are also presented.
Collapse
Affiliation(s)
| | - Shahrul Ainliah Alang Ahmad
- Faculty of Science, Department of Chemistry, Universiti Putra Malaysia, Selangor, Malaysia.,Institute of Advanced Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Nor Zida Rosly
- Institute of Advanced Technology, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|