1
|
Mei L, Shi Y, Ding X, Li J. Integrated tetrahydroxyphthalocyanine-coated graphene decorated with ionic liquid-functionalized gold nanoparticles for highly sensitive and selective electrochemical determination of ascorbic acid in fruit juices. Mikrochim Acta 2024; 191:766. [PMID: 39604518 DOI: 10.1007/s00604-024-06852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Surface functionalization and the combined utilization of zero-dimensional and two-dimensional nanomaterials is an effective method to achieve highly sensitive detection for electrochemical analysis. Using an all-in-one strategy, phthalocyanine, gold nanoparticles, and ionic liquid were successively modified on the graphene surface as a highly integrated electrode modification material. Phthalocyanine can repair the defects of reduced graphene oxide by binding to the graphene structure surface through non-covalent functionalization. The combination of ionic liquid on the surface of gold nanoparticles can enhance their physical and chemical activity while preserving their stability. The obtained phthalocyanine-coated graphene nanosheets decorated with ionic liquid-functionalized gold nanoparticles nanocomposites had enhanced electrocatalysis and conductivity ability, and were used for highly sensitive electrochemical detection of ascorbic acid in fruit juices. Excellent results were obtained for the detection of ascorbic acid in the linear range 0.05 to 50 µmol/L with a detection limit of 6.80 nmol/L (S/N = 3) and a sensitivity of 2.68 μA μM-1 cm-2, indicated that the proposed sensor strategy with multiple signal amplification can achieve higher detection sensitivity. Furthermore, the sensor was used to quantify ascorbic acid content in grapefruit and orange juice with good selectivity and accuracy. The highly integrated electroactive nanocomposites construction method described may also be used with other electrode modification materials and is anticipated to yield fresh perspectives on the advancement of ultrasensitive detection.
Collapse
Affiliation(s)
- Lin Mei
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou, 450007, P.R. China.
| | - Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Xueke Ding
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou, 450007, P.R. China
| | - Jing Li
- School of Foreign Languages, Zhongyuan University of Technology, Zhengzhou, 450007, P.R. China
| |
Collapse
|
2
|
Wei M, Yuan Y, Chen D, Pan L, Tong W, Lu W. A systematic review on electrochemical sensors for the detection of acetaminophen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6134-6155. [PMID: 39207184 DOI: 10.1039/d4ay01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Considerable progress has been made in the electrochemical determination of acetaminophen (AP) over the past few decades. Nanomaterials or enzymes as electrode modifiers greatly improve the performance of AP electrochemical sensors. This review focuses on the development potential, detection principles and techniques for the electrochemical analysis of AP. In particular, the design and construction of AP electrochemical sensors are discussed from the perspective of non-enzyme materials (such as nanomaterials, including precious metals, transition metals and non-metals) and enzyme substances (such as aryl acylamidase, polyphenol oxidase and horseradish peroxidase). Moreover, the influencing factors for AP electrochemical sensors and the simultaneous detection of AP and other targets are summarized, and the future prospective of AP electrochemical sensors is outlined. This review provides a reference and guidance for the development and application of electrochemical sensors for AP detection.
Collapse
Affiliation(s)
- Ming Wei
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Yikai Yuan
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Dongsheng Chen
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Lin Pan
- Department of Laboratory Medicine, Tianjin Peace District Obstetrics and Gynecology Hospital, Tianjin, 300020, China
| | - Wenting Tong
- Kangda College of Nanjing Medical University, Lianyungang 222000, Jiangsu, China.
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
3
|
Shi Y, Hu K, Mei L, Chao L, Wu M, Chen Z, Wu X, Qiao J, Zhu P, Miao M, Zhang S. Platforms of graphene/MXene heterostructure for electrochemical monitoring of rutin in drug and Tartary buckwheat tea. Talanta 2024; 270:125548. [PMID: 38104427 DOI: 10.1016/j.talanta.2023.125548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The use of two-dimensional heterostructure composite as electrode modification material has become a new strategy to improve the electrocatalytic activity and electroactive sites of electrochemical sensor. Herein, a soluble heterostructure, namely rGO-PSS@MXene, was designed and synthesized by integrating poly (sodium p-styrenesulfonate)-functionalized reduced graphene oxide into MXene nanosheets via ultrasonic method. The interactive heterostructure can effectively alleviate the self-stacking of MXene and rGO, endowing them with superior electron transfer capacity and large specific surface area, thereby producing prominent synergistic electrocatalytic effect towards rutin. In addition, the excellent enrichment effect of rGO-PSS@MXene for rutin also plays an important role through the electrostatic and π-π stacking interactions. The electrochemical characteristics of rutin on the sensor were examined in detail and a sensitive sensing method was proposed. Under optimized conditions, the method showed satisfactory linear relationship for rutin in the concentration range of 0.005-10.0 μM, with limit of detection of 1.8 nM (S/N = 3). The quantitative validation results in herbal medicine and commercial Tartary buckwheat tea were highly consistent with the labeled quantity and the results of HPLC determination, respectively, suggesting the sensor possessed excellent selectivity and accuracy. This proposed strategy for rutin determination is expected to expand the application of MXene heterostructure in electrochemical sensors, and is envisioned as a promising candidate for quality monitoring of drugs and foods.
Collapse
Affiliation(s)
- Yanmei Shi
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China; People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, PR China
| | - Kai Hu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, 450007, PR China.
| | - Liqin Chao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Mingxia Wu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Zhihong Chen
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Xiangxiang Wu
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Jingyi Qiao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Pingsheng Zhu
- College of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450001, PR China.
| | - Sisen Zhang
- People's Hospital of Henan University of Chinese Medicine/Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, PR China.
| |
Collapse
|
4
|
Gopinath SCB, Ramanathan S, More M, Patil K, Patil SJ, Patil N, Mahajan M, Madhavi V. A Review on Graphene Analytical Sensors for Biomarker-based Detection of Cancer. Curr Med Chem 2024; 31:1464-1484. [PMID: 37702170 DOI: 10.2174/0929867331666230912101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 06/22/2023] [Indexed: 09/14/2023]
Abstract
The engineering of nanoscale materials has broadened the scope of nanotechnology in a restricted functional system. Today, significant priority is given to immediate health diagnosis and monitoring tools for point-of-care testing and patient care. Graphene, as a one-atom carbon compound, has the potential to detect cancer biomarkers and its derivatives. The atom-wide graphene layer specialises in physicochemical characteristics, such as improved electrical and thermal conductivity, optical transparency, and increased chemical and mechanical strength, thus making it the best material for cancer biomarker detection. The outstanding mechanical, electrical, electrochemical, and optical properties of two-dimensional graphene can fulfil the scientific goal of any biosensor development, which is to develop a more compact and portable point-of-care device for quick and early cancer diagnosis. The bio-functionalisation of recognised biomarkers can be improved by oxygenated graphene layers and their composites. The significance of graphene that gleans its missing data for its high expertise to be evaluated, including the variety in surface modification and analytical reports. This review provides critical insights into graphene to inspire research that would address the current and remaining hurdles in cancer diagnosis.
Collapse
Affiliation(s)
- Subash Chandra Bose Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Santheraleka Ramanathan
- Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mahesh More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, India
| | - Ketan Patil
- Department of Pharmaceutics, Ahinsa Institute of Pharmacy, Dondaicha, India
| | | | - Narendra Patil
- Department of Pharmacology, Dr. A.P.J. Abdul Kalam University, Indore, India
| | - Mahendra Mahajan
- Department of Pharmaceutical Chemistry, H.R. Patel Institute of Pharmacy, Shirpur, India
| | - Vemula Madhavi
- BVRIT Hyderabad college of Engineering for Women, Hyderabad, India
| |
Collapse
|
5
|
Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. CHEMOSPHERE 2022; 306:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acetaminophen is a widely used analgesic throughout the world. Detection of acetaminophen has particular value in pharmacy and clinics. Electrochemical sensors assembled with advanced materials are an effective method for the rapid detection of acetaminophen. Graphene-based carbon nanomaterials have been extensively investigated for potential analytical applications in the last decade. In this article, we selected papers containing both graphene and acetaminophen. Bibliometrics was used to analyze the relationships and trends among these papers. The results show that the topic has grown at a high rate since 2009. Among them, the detection of acetaminophen by an electrochemical sensor based on graphene is the most important direction. Graphene has moved from being a primary sensing material to a substrate for immobilization of other active ingredients. In addition, the degradation of acetaminophen using graphene-modified electrodes is also an important direction. We analyzed the research history and current status of this topic through bibliometrics. Authors, institutions, countries, and key literature were discussed. We also proposed perspectives for this topic.
Collapse
Affiliation(s)
- Shuyan Xiang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
6
|
Balogun SA, Fayemi OE. Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials. BIOSENSORS 2022; 12:850. [PMID: 36290988 PMCID: PMC9599089 DOI: 10.3390/bios12100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Cobalt phthalocyanine multiwalled carbon nanotubes (CoPc-MWCNTs), a nanocomposite, are extraordinary electrochemical sensing materials. This material has attracted growing interest owing to its unique physicochemical properties. Notably, the metal at the center of the metal phthalocyanine structure offers an enhanced redox-active behavior used to design solid electrodes for determining varieties of analytes. This review extensively discusses current developments in CoPc-MWCNTs nanocomposites as potential materials for electrochemical sensors, along with their different fabrication methods, modifying electrodes, and the detected analytes. The advantages of CoPc-MWCNTs nanocomposite as sensing material and its future perspectives are carefully reviewed and discussed.
Collapse
Affiliation(s)
- Sheriff A. Balogun
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Mmabatho 2735, South Africa
| |
Collapse
|
7
|
Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi CH, Park K, Kim SK, Madhavi G, Park JP, Shetti NP. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci 2022; 304:102664. [PMID: 35413509 DOI: 10.1016/j.cis.2022.102664] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Graphene is an intriguing two-dimensional honeycomb-like carbon material with a unique basal plane structure, charge carrier mobility, thermal conductivity, wide electrochemical spectrum, and unusual physicochemical properties. Therefore, it has attracted considerable scientific interest in the field of nanoscience and bionanotechnology. The high specific surface area of graphene allows it to support high biomolecule loading for good detection sensitivity. As such, graphene, graphene oxide (GO), and reduced GO are excellent materials for the fabrication of new nanocomposites and electrochemical sensors. Graphene has been widely used as a chemical building block and/or scaffold with various materials to create highly sensitive and selective electrochemical sensing microdevices. Over the past decade, significant advancements have been made by utilizing graphene and graphene-based nanocomposites to design electrochemical sensors with enhanced analytical performance. This review focus on the synthetic strategies, as well as the structure-to-function studies of graphene, electrochemistry, novel multi nanocomposites combining graphene, limit of detection, stability, sensitivity, assay time. Finally, the review describes the challenges, strategies and outlook on the future development of graphene sensors technology that would be usable for the internet of things are also highlighted.
Collapse
|
8
|
Soluble tetraaminophthalocyanines indium functionalized graphene platforms for rapid and ultra-sensitive determination of rutin in Tartary buckwheat tea. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Shi Y, Zhang X, Mei L, Hu K, Chao L, Li X, Miao M. 2D Accordion‐like MXene Nanosheets as a Sensitive Electrode Material for Baicalin Sensing. ELECTROANAL 2021. [DOI: 10.1002/elan.202060535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yan‐Mei Shi
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Xi Zhang
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Lin Mei
- School of Materials and Chemical Engineering Zhongyuan University of Technology Zhengzhou 450007, P.R. China
| | - Kai Hu
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Li‐Qin Chao
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| | - Xiu‐Min Li
- Department of Microbiology and Immunology New York Medical College New York NY 10595 USA
| | - Ming‐San Miao
- Academy of Chinese Medical Sciences Henan University of Chinese Medicine Zhengzhou 450001 P.R. China
| |
Collapse
|