1
|
Shen Z, Yang Y, Gu Y, Wang Z, Wang S. Carbazole-pyrimidine-based novel ratiometric fluorescent probe with large Stokes shift for detection of hydrazine in real environments and organisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136593. [PMID: 39577292 DOI: 10.1016/j.jhazmat.2024.136593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Widespread application of hydrazine results in serious harm on the natural environments and human health because of its highly toxic, mutagenic, carcinogenic and teratogenic properties. Hence, it is very emergent to develop a convenient and efficient method for detection of hydrazine existed in real environments and living organisms. In this work, a novel ratiometric fluorescent probe PKZ-IN from the natural monoterpenoid 2-hydroxy-3-pinanone was designed and synthesized to detect trace hydrazine. The detection performance of probe PKZ-IN for hydrazine was investigated, and the results showed that this probe possessed excellent performance including large Stokes shift (211 nm), fast response time (<30 s), remarkable emission shift (136 nm), and a wide pH range (5 -13). This probe was successfully used to detect hydrazine existed in three different soil samples (humus soil, sandy soil and loess soil). In addition, probe PKZ-IN was also used to prepare nanofibrous membrane for detecting gaseous hydrazine qualitatively and quantitively by the mobile phone platform. Furthermore, PKZ-IN was successfully applied in living organisms and plants imaging for detection of the residual hydrazine.
Collapse
Affiliation(s)
- Zheyu Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yixin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Gong S, Chen J, Chen Y, Tian J, Gu Y, Xu X, Wang Z, Wang S. A novel fluorescent probe for fast detection of sulfur dioxide derivatives in water, soil, food samples and its applications in biological imaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135975. [PMID: 39342854 DOI: 10.1016/j.jhazmat.2024.135975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Sulfur dioxide (SO2) has a wide range of applications in food additives and industrial production, and it is one of the main substances that form acid rain, causing serious harm to ecosystems and human health. Hence, it is necessary to construct an effective tool to quickly and accurately detect SO2 derivatives in environmental, food, and biological samples. In this study, fluorescent probe NPMQ was built to detect SO2 derivatives from nopinone with the merits of superior water solubility, high sensitivity (12 nM), excellent specificity, large Stokes shift (180 nm), and rapid response time (within 5 s). NPMQ was used to qualitatively and quantitatively detect SO2 derivatives in environmental water, soil and food samples. In addition, an electrospinning film was prepared with the probe NPMQ to image SO2 derivatives, and test strips are capable of rapidly, sensitively, and selectively detecting SO2 derivatives with the naked eye. Moreover, the probe NPMQ was used to visualize endogenous SO2 derivatives in Arabidopsis thaliana under Cd2+ stress. Furthermore, the probe NPMQ was employed to image exogenous and endogenous SO2 derivatives in living Hela, HepG-2 cells, and zebrafish. This study develops an effective tool for monitoring SO2 derivatives in the environmental, food, and biological systems.
Collapse
Affiliation(s)
- Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaxing Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yifan Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jixiang Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Liang Y, Zhang C, Meng Z, Gong S, Tian J, Li R, Wang Z, Wang S. In-situ evaluation the fluctuation of hypochlorous acid in acute liver injury mice models with a mitochondria-targeted NIR ratiometric fluorescent probe. Talanta 2024; 277:126355. [PMID: 38838563 DOI: 10.1016/j.talanta.2024.126355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Acute liver injury (ALI) is a frequent and devastating liver disease that has been made more prevalent by the excessive use of chemicals, drugs, and alcohol in modern life. Hypochlorous acid (HClO), an important biomarker of oxidative stress originating mainly from the mitochondria, has been shown to be intimately connected to the development and course of ALI. Herein, a novel BODIPY-based NIR ratiometric fluorescent probe Mito-BS was constructed for the specific recognition of mitochondrial HClO. The probe Mito-BS can rapidly respond to HClO within 20 s with a ratiometric fluorescence response (from 680 nm to 645 nm), 24-fold fluorescence intensity ratio enhancement (I645/I680), a wide pH adaptation range (5-9) and the low detection limit (31 nM). The probe Mito-BS has been effectively applied to visualize endogenous and exogenous HClO fluctuations in living zebrafish and cells based on its low cytotoxicity and prominent mitochondria-targeting ability. Furthermore, the fluorescent probe Mito-BS makes it possible to achieve the non-invasive in-situ diagnosis of ALI through in mice, and provides a feasible strategy for early diagnosis and drug therapy of ALI and its complications.
Collapse
Affiliation(s)
- Yueyin Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chunjie Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jixiang Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruoming Li
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Cai X, Li S, Wang W, Lin Y, Zhong W, Yang Y, Kühn FE, Li Y, Zhao Z, Tang BZ. Natural Acceptor of Coumarin-Isomerized Red-Emissive BioAIEgen for Monitoring Cu 2+ Concentration in Live Cells via FLIM. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307078. [PMID: 38102823 PMCID: PMC10916553 DOI: 10.1002/advs.202307078] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Artificial aggregation-induced emission luminogens (AIEgens) have flourished in bio-applications with the development of synthetic chemistry, which however are plagued by issues like singularity in structures and non-renewability. The unique structures and renewability of biomass moieties can compensate for these drawbacks, but their properties are hard to design and regulate due to their confined structures. Therefore, it appears to be a reasonable approach to derive AIEgens from abundant biomass (BioAIEgens), integrating the bilateral advantages of both synthetic and natural AIEgens. In this work, the blue-violet emissive coumarin with its lactone structure serving as a rare natural acceptor, is utilized to construct donor-π-acceptor typed BioAIE isomers incorporating the propeller-like and electron-donating triphenylamine (TPA) unit. The results show that Cm-p-TPA undergoes charge transfer with its keto form, emitting red light at 600 nm, which can be applied to monitor Cu2+ concentration during mitophagy using fluorescence lifetime imaging microscopy because of the excellent biocompatibility, photostability, and specific recognition to Cu2+ . This work not only demonstrates the feasibility of utilizing positional isomerization to modulate excited-state evolutions and resultant optical properties, but also provides evidence for the rationality of constructing biologically-active BioAIEgens via a biomass-derivatization concept.
Collapse
Affiliation(s)
- Xu‐Min Cai
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037P.R.China
| | - Shouji Li
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037P.R.China
| | - Wen‐Jin Wang
- Clinical Translational Research Center of Aggregation‐Induced EmissionThe Second Affiliated HospitalSchool of MedicineSchool of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong, Shenzhen (CUHK‐Shenzhen)Guangdong518172P.R.China
| | - Yuting Lin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037P.R.China
| | - Weiren Zhong
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037P.R.China
| | - Yalan Yang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037P.R.China
| | - Fritz E. Kühn
- Molecular CatalysisDepartment of Chemistry & Catalysis Research CenterSchool of Natural SciencesTechnische Universität MünchenD‐85747 MünchenGermany
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical BiologySchool of Pharmaceutical Sciences and the Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436P.R.China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation‐Induced EmissionThe Second Affiliated HospitalSchool of MedicineSchool of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong, Shenzhen (CUHK‐Shenzhen)Guangdong518172P.R.China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation‐Induced EmissionThe Second Affiliated HospitalSchool of MedicineSchool of Science and EngineeringShenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong, Shenzhen (CUHK‐Shenzhen)Guangdong518172P.R.China
| |
Collapse
|
5
|
Zhao J, Li C, Wei S, Lü C, Zou LW. A multifunctional fluorescent probe based on Schiff base with AIE and ESIPT characteristics for effective detections of Pb 2+, Ag + and Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122904. [PMID: 37229941 DOI: 10.1016/j.saa.2023.122904] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
In this work, three Schiff-based fluorescent probes with aggregation-induced emission (AIE) and excited intramolecular proton transfer (ESIPT) characters were synthesized by grafting 2-aminobenzothiazole group onto 4-substituted salicylaldehydes. More important, a rare tri-responsive fluorescent probe (SN-Cl) was developed by purposeful variation of substituents in the molecule. It could selectively identify Pb2+, Ag+ and Fe3+ in different solvent systems or with the help of masking agent and show complete fluorescence enhancement without interference of other ions. Meanwhile, the other two probes (SN-ON and SN-N) could only recognize Pb2+ in DMSO/Tris-HCl buffer (3: 7, v/v, pH = 7.4). According to Job's plot, density functional theory (DFT) calculations and NMR analysis, coordination between SN-Cl and Pb2+/Ag+/Fe3+ was determined. The LOD values for three ions were as low as 0.059 μM, 0.012 μM and 8.92 μM, respectively. Ideally, SN-Cl showed satisfactory performance in real water samples detection and test paper experiments for three ions. Also, SN-Cl could be used as an excellent imaging agent for Fe3+ in HeLa cells. Therefore, SN-Cl has the ability to be a "single fluorescent probe for three targets".
Collapse
Affiliation(s)
- Jianing Zhao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, PR China
| | - Ciqin Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Sihan Wei
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, PR China
| | - Chengwei Lü
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, PR China.
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
6
|
Tang X, Han Y, Zhou W, Shen W, Wang Y. A FRET Based Composite Sensing Material Based on UCNPs and Rhodamine Derivative for Highly Sensitive and Selective Detection of Fe 3. J Fluoresc 2023; 33:2219-2228. [PMID: 37004623 DOI: 10.1007/s10895-023-03223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
The existence of excessive concentration of iron ion (Fe3+) in water will do harm to the environment and biology. Presently, sensitive and selective determination of Fe3+ directly in real environment samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new sensor system for Fe3+ based on fluorescence resonance energy transfer (FRET) from upconversion nanoparticles (UCNPs) to Rhodamine derivative probe (RhB). The NaYF4: Yb, Er@SiO2@P(NIPAM-co-RhB) nanocomposites was constructed, in which PNIPAm was used as the probe carrier. The nanocomposites can not only be excited by infrared light to avoid the interference of background light in the Fe3+ detection process, but also enhance the detection signal output through temperature control. Under the optimum conditions, the RSD (Relative standard deviation) of actual sample measurements ranges was from 1.95% to 4.96%, with the recovery rate from 97.4% to 103.3%, which showed high reliability for Fe3+ detection. This work could be extended to sensing other target ions or molecules and may promote the widespread use of FRET technique.
Collapse
Affiliation(s)
- Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Yunlong Han
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wencheng Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenjing Shen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yemei Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
7
|
Liu Y, Cui H, Wei K, Kang M, Liu P, Yang X, Pei M, Zhang G. A new Schiff base derived from 5-(thiophene-2-yl)oxazole as "off-on-off" fluorescence sensor for monitoring indium and ferric ions sequentially and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122376. [PMID: 36709682 DOI: 10.1016/j.saa.2023.122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A new Schiff base sensor (E)-N'-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)-5-(thiophen-2-yl)oxazole-4-carbohydrazide (TOQ) was synthesized and found to emit yellowish green fluorescence upon introduction of In3+. Furthermore, the resulting complex TOQ-In3+ was quenched selectively by Fe3+. The detection limits of TOQ for In3+ and Fe3+ were 1.75 × 10-10 M and 8.45 × 10-9 M, respectively. The complex stoichiometry of TOQ with target ions was determined to be 1:2 via Job's plot analysis, which further was verified by ESI-MS titration and theoretical calculations. Moreover, TOQ can be used for the determination of target ions in environmental water samples. A portable paper sensor of TOQ was successfully developed for detecting In3+ to assess its applicability.
Collapse
Affiliation(s)
- Yuanying Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Huanxia Cui
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.
| | - Kehui Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
8
|
Ağırtaş MS, Cabir B, Gonca S, Ozdemir S. Antioxidant, Antimicrobial, DNA Cleavage, Fluorescence Properties and Synthesis of 4- (3,4,5-Trimethoxybenzyloxy) Phenoxy) Substituted Zinc Phthalocyanine. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1922469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mehmet Salih Ağırtaş
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Beyza Cabir
- Department of Chemistry, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Serpil Gonca
- Department of Textile, Clothing, Footwear and Leather, Van Vocational School, Van Yüzüncü Yıl University, Van, Turkey
| | - Sadin Ozdemir
- Department of Medical Laboratory Services, Health Services Vocational School, Mersin University, Yenisehir, Mersin, Turkey
- Food Processing Programme, Technical Science Vocational School, Mersin University, Yenisehir, Mersin, Turkey
| |
Collapse
|
9
|
Recent Advances on Biological Activities and Structural Modifications of Dehydroabietic Acid. Toxins (Basel) 2022; 14:toxins14090632. [PMID: 36136570 PMCID: PMC9501862 DOI: 10.3390/toxins14090632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Dehydroabietic acid is a tricyclic diterpenoid resin acid isolated from rosin. Dehydroabietic acid and its derivatives showed lots of medical and agricultural bioactivities, such as anticancer, antibacterial, antiviral, antiulcer, insecticidal, and herbicidal activities. This review summarized the research advances on the structural modification and total synthesis of dehydroabietic acid and its derivatives from 2015 to 2021, and analyzed the biotransformation and structure-activity relationships in order to provide a reference for the development and utilization of dehydroabietic acid and its derivatives as drugs and pesticides.
Collapse
|
10
|
Xia MC, Cai L, Xu F, Zhan Q, Feng J, Guo C, Li Q, Li Z. Whole-body chemical imaging of Cordyceps sinensis by TOF-SIMS to visualize spatial differentiation of ergosterol and other active components. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Zhang C, Lv X, Liu X, Chen H, He H. A reasonably constructed fluorescent chemosensor based on the dicyanoisophorone skeleton for the discriminative sensing of Fe 3+ and Hg 2+ as well as imaging in HeLa cells and zebrafish. RSC Adv 2022; 12:12355-12362. [PMID: 35480345 PMCID: PMC9037825 DOI: 10.1039/d2ra01357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a new fluorescent sensor dicyanoisophorone Rhodanine-3-acetic acid (DCI-RDA) (DCI-RDA) has been developed by employing a DCI-based push–pull dye as the fluorophore and RDA as the recognition moiety for the simultaneous sensing of Fe3+ and Hg2+ with a large Stokes Shift (162 nm), high selectivity and sensitivity, and low LOD (1.468 μM for Fe3+ and 0.305 μM for Hg2+). In particular, DCI-RDA has a short response time (30 s). The Job's plot method in combination with 1H NMR titration and theoretical calculations was used to determine the stoichiometry of both DCI-RDA-Fe3+/Hg2+ complexes to be 1 : 1. Moreover, DCI-RDA is applied as a fluorescent probe for imaging in HeLa cells and zebrafish, indicating that it can be potentially applied for Fe3+/Hg2+ sensing in the field of biology. A new fluorescent sensor dicyanoisophorone rhodanine-3-acetic acid has been developed by employing a DCI-based push–pull dye as the fluorophore and RDA as the recognition moiety for the simultaneous sensing of Fe3+ and Hg2+.![]()
Collapse
Affiliation(s)
- Chuqi Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Xinyan Lv
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Xiuhong Liu
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Hongyun Chen
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| | - Haifeng He
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University Nanchang 330013 People's Republic of China
| |
Collapse
|
12
|
Zheng D, Zhang T, Huang Y, Chen H, Li Y, Cao Z, Deng Y, Fang Y, Peng C. Phenoxazine-conjugated-benzoeindolium as a novel mitochondria-targeted fluorescent probe for turn-on detection of sulfur dioxide and its derivatives in vivo. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
A multifunctional selective fluorescent chemosensor for detection of Ga3+, In3+ and Fe3+ in different solvents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Liu QS, Yang ZH, Wang ZL, Sun Y, Chen LL, Sun L, Sun XB, Gu W. A novel dehydroabietic acid-based AIE-active fluorescent probe for rapid detection of Hg2+ and its environmental and biological applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Pang CM, Cao XY, Xiao Y, Luo SH, Chen Q, Zhou YJ, Wang ZY. N-alkylation briefly constructs tunable multifunctional sensor materials: Multianalyte detection and reversible adsorption. iScience 2021; 24:103126. [PMID: 34632330 PMCID: PMC8487030 DOI: 10.1016/j.isci.2021.103126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
A series of N-alkyl-substituted polybenzimidazoles (SPBIs), synthesized by simple condensation and N-alkylation, act as functional materials with tunable microstructures and sensing performance. For their controllable morphologies, the formation of nano-/microspheres is observed at the n(RBr)/n(PBI) feed ratio of 5:1. Products with different degrees of alkylation can recognize metal ions and nitroaromatic compounds (NACs). For example, SPBI-c, obtained at the feed ratio of 1:1, can selectively detect Cu2+, Fe3+, and NACs. By contrast, SPBI-a, obtained at the feed ratio of 0.1:1, can exclusively detect Cu2+ with high sensitivity. Their sensing mechanisms have been studied by FT-IR spectroscopy, SEM, XPS, and DFT calculations. Interestingly, the SPBIs can adsorb Cu2+ in solution and show good recyclability. These results demonstrate that polymeric materials with both sensing and adsorption applications can be realized by regulating the alkylation extent of the main chain, thus providing a new approach for the facile synthesis of multifunctional materials.
Collapse
Affiliation(s)
- Chu-Ming Pang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- School of Health Medicine, Guangzhou Huashang College, Guangzhou 511300, P. R. China
| | - Xi-Ying Cao
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Ying Xiao
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Qi Chen
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Jun Zhou
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|
16
|
Zhang W, Yu C, Yang M, Wen S, Zhang J. Characterization of a Hg 2+-Selective Fluorescent Probe Based on Rhodamine B and Its Imaging in Living Cells. Molecules 2021; 26:3385. [PMID: 34205046 PMCID: PMC8199853 DOI: 10.3390/molecules26113385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
A small organic molecule P was synthesized and characterized as a fluorometric and colorimetric dual-modal probe for Hg2+. The sensing characteristics of the proposed probe for Hg2+ were studied in detail. A fluorescent enhancing property at 583 nm (>30 fold) accompanied with a visible colorimetric change, from colorless to pink, was observed with the addition of Hg2+ to P in an ethanol-water solution (8:2, v/v, 20 mM HEPES, pH 7.0), which would be helpful to fabricate Hg2+-selective probes with "naked-eye" and fluorescent detection. Meanwhile, cellular experimental results demonstrated its low cytotoxicity and good biocompatibility, and the application of P for imaging of Hg2+ in living cells was satisfactory.
Collapse
Affiliation(s)
- Wenting Zhang
- Laboratory of Environmental Monitoring, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, China; (W.Z.); (C.Y.); (S.W.)
- School of Public Health, Hainan Medical University, Haikou 571101, China;
| | - Chunwei Yu
- Laboratory of Environmental Monitoring, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, China; (W.Z.); (C.Y.); (S.W.)
| | - Mei Yang
- School of Public Health, Hainan Medical University, Haikou 571101, China;
| | - Shaobai Wen
- Laboratory of Environmental Monitoring, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, China; (W.Z.); (C.Y.); (S.W.)
| | - Jun Zhang
- Laboratory of Environmental Monitoring, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou 571199, China; (W.Z.); (C.Y.); (S.W.)
- Laboratory of Tropical Biomedicine and Biotechnology, Hainan Medical University, Haikou 571101, China
| |
Collapse
|
17
|
Li AL, Wang ZL, Wang WY, Liu QS, Sun Y, Gu W. A novel dehydroabietic acid-based turn-on fluorescent probe for the detection of bisulfite and its application in live-cell and zebrafish imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj02959b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel “Turn-on” fluorescent probe, which displayed prominent sensitivity and selectivity for the detection of HSO3−, was synthesized from dehydroabietic acid. The probe also showed high lysosome-targeting properties when sensing HSO3− in MCF-7 cells.
Collapse
Affiliation(s)
- A-Liang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Zhong-Long Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wen-Yan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qing-Song Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Inovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|