1
|
Wang J, Feng Y, Zhang H, Han L, Xia J, Wang G. Uniformly aligned Ag NPs/graphene paper for enhanced SERS detection of pesticide residue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125535. [PMID: 39644821 DOI: 10.1016/j.saa.2024.125535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The surface-enhanced Raman scattering (SERS) technique provides a quick and reliable method for detecting pesticide residues. In this study, flexible substrates, composed of orderly arranged silver nanospheres (Ag NPs) films on graphene paper, were fabricated through a simple, low-cost Ag NP self-assembly process at a liquid-liquid interface, followed by transfer of the films onto the graphene paper. The SERS performance of the fabricated substrates was evaluated using a portable Raman spectrometer, with rhodamine 6G (R6G) serving as the probe molecule. The results indicate that the bilayer Ag NP films-covered graphene paper exhibits optimal overall performance, characterized by high sensitivity and high uniformity. The limit of detection (LOD) for the R6G molecule is as low as 8.73 × 10-9 M, demonstrating the strong signal amplification capability of the SERS substrate. Moreover, the relative standard deviation (RSD) of the Raman intensity at 1508 cm-1 for different selected points on the substrate is 5.018 %, indicating high uniformity of the SERS substrate. Finally, the performance of the SERS substrate was further evaluated by detecting thiram in fresh orange juice, demonstrating the capability to detect concentrations as low as 10-6 M. This result highlights the significant potential of the developed SERS substrate for practical applications in food safety and quality control.
Collapse
Affiliation(s)
- Jinyang Wang
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Yue Feng
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Huiliang Zhang
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China; Hebei Computational Optical Imaging and Photoelectric Detection Technology Innovation Center, Handan 056038, Hebei, China; Hebei International Joint Research Center for Computational Optical Imaging and Intelligent Sensing, Handan 056038, Hebei, China.
| | - Longhao Han
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Jin Xia
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
| | - Guangjian Wang
- School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China.
| |
Collapse
|
2
|
Serebrennikova KV, Komova NS, Zherdev AV, Dzantiev BB. SERS Sensors with Bio-Derived Substrates Under the Way to Agricultural Monitoring of Pesticide Residues. BIOSENSORS 2024; 14:573. [PMID: 39727838 DOI: 10.3390/bios14120573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Uncontrolled use of pesticides in agriculture leads to negative consequences for the environment, as well as for human and animal health. Therefore, timely detection of pesticides will allow application of measures to eliminate the excess of maximum residue limits and reduce possible negative consequences in advance. Common methods of pesticide analysis suffer from high costs, and are time consuming, and labor intensive. Currently, more attention is being paid to the development of surface-enhanced Raman scattering (SERS) sensors as a non-destructive and highly sensitive tool for detecting various chemicals in agricultural applications. This review focuses on the current developments of biocompatible SERS substrates based on natural materials with unique micro/nanostructures, flexible SERS substrates based on biopolymers, as well as functionalized SERS substrates, which are close to the current needs and requirements of agricultural product quality control and environmental safety assessment. The impact of herbicides on the process of photosynthesis is considered and the prospects for the application of Raman spectroscopy and SERS for the detection of herbicides are discussed.
Collapse
Affiliation(s)
- Kseniya V Serebrennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Nadezhda S Komova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| |
Collapse
|
3
|
Barshutina M, Arsenin A, Volkov V. SERS analysis of single cells and subcellular components: A review. Heliyon 2024; 10:e37396. [PMID: 39315187 PMCID: PMC11417266 DOI: 10.1016/j.heliyon.2024.e37396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
SERS is a rapidly advancing and non-destructive technique that has been proven to be more reliable and convenient than other traditional analytical methods. Due to its sensitivity and specificity, this technique is earning its place as a routine and powerful tool in biological and medical studies, especially for the analysis of living cells and subcellular components. This paper reviewed the research progress of single-cell SERS that has been made in the last few years and discussed challenges and future perspectives of this technique. The reviewed SERS platforms have been categorized according to their nature into the following types: (1) colloid-based, substrate-based, or hybrid; (2) ligand-based or ligand-free, and (3) label-based or label-free. The advantages and disadvantages of each type and their potential applications in various fields are thoroughly discussed.
Collapse
Affiliation(s)
- M. Barshutina
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
| | - V. Volkov
- Laboratory of Advanced Functional Materials, Yerevan State University, Yerevan, Armenia
- Emerging Technologies Research Center, XPANCEO, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Liu X, Dang A, Li T, Lee TC, Sun Y, Liu Y, Ye F, Ma S, Yang Y, Deng W. Triple-enhanced Raman scattering sensors from flexible MXene/Au nanocubes platform via attenuating the coffee ring effect. Biosens Bioelectron 2023; 237:115531. [PMID: 37473547 DOI: 10.1016/j.bios.2023.115531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Developing substrates that combine sensitivity and signal stability is a major challenge in surface enhanced Raman scattering (SERS) research. Herein, we present a flexible triple-enhanced Raman Scattering MXene/Au nanocubes (AuNCs) sensor fabricated by selective filtration of Ti3C2Tx MXene/AuNCs hybrid on the Ti3C2Tx MXene membrane and subsequent treatment with 1H,1H,2H,2H-perfluoro-octyltriethoxysilane (FOTS). The resultant superhydrophobic MXene/AuNCs-FOTS membrane not only provides the SERS substrate with environmental stability, but also imparts analyte enrichment to enhance the sensitivity (LOD = 1 × 10-14 M) and reliability (RSD = 6.41%) for Rhodamine 6G (R6G) molecules owing to the attenuation of the coffee ring effect. Moreover, the triple enhancement mechanism of combining plasmonic coupling enhancement from plasmonic coupling (EM) of nearby AuNCs at lateral and longitudinal direction of MXene/AuNCs-FOTS membrane, charge transfer (CT) from Ti3C2Tx MXene and target molecules and analyte enrichment function provides the substrate with excellent SERS performance (EF = 3.19 × 109), and allows efficient quantification of biomarkers in urine. This work could provide new insights into MXenes as building blocks for high-performance substrates and fill existing gaps in SERS techniques.
Collapse
Affiliation(s)
- Xin Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Alei Dang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| | - Tiehu Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| | - Tung-Chun Lee
- Department of Chemistry, University College London (UCL), London, WC1H 0AJ, UK; Institute for Materials Discovery, University College London, London, WC1H 0AJ, UK
| | - Yiting Sun
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yuhui Liu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Fei Ye
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Shuze Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yong Yang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Weibin Deng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Shannxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| |
Collapse
|
5
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
6
|
Chen Y, Zhu L, Yang Y, Wu D, Zhang Y, Cheng W, Tang X. Fabrication of a metal organic framework (MOF)-modified Au nanoparticle array for sensitive and stable SERS sensing of paraquat in cereals. J Food Sci 2023; 88:1769-1780. [PMID: 36916072 DOI: 10.1111/1750-3841.16530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
A high-performance Au@MIL-101/PMMA/DT surface-enhanced Raman scattering (SERS) substrate was fabricated for sensitive and stable detection of paraquat by self-assembling metal organic framework-modified Au nanoparticles (Au@MIL-101) on a poly(methyl methacrylate) (PMMA) film and then immobilizing the formed substrate onto a duct tape (DT). The highly closely packed Au@MIL-101 array provided intensive hotspots for SERS sensing. The MIL-101 layer modified on the surface of Au nanoparticles could absorb paraquat to the electromagnetic enhancement area of Au nanoparticles. The DT on the bottom made the substrate smoother, which is beneficial for achieving a more stable detection performance. As a result, the constructed substrate exhibited outstanding uniformity with relative standard deviations of 9.47% and storage stability for 2 months. For detecting paraquat, the substrate showed a low detection limit of 7.1 × 10-9 M (1.83 µg/kg) and wide linear range from 10-8 to 10-2 M. Furthermore, the substrate showed good detection performance in real cereal samples with desirable recovery rates from 91.57% to 102.32%.
Collapse
Affiliation(s)
- Yumin Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Linxuan Zhu
- Hanzhong Food and Drug Inspection and Testing Center, Hanzhong, China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
7
|
Anchoring Au on UiO-66 surface with thioglycolic acid for simultaneous SERS detection of paraquat and diquat residues in cabbage. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Lv M, Hussain N, Sun DW, Pu H. Rapid Detection of Paraquat Residues in Fruit Samples using Mercaptoacetic Acid Functionalized Au@AgNR SERS Substrate. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
9
|
Paraquat and Diquat: Recent Updates on Their Pretreatment and Analysis Methods since 2010 in Biological Samples. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020684. [PMID: 36677742 PMCID: PMC9866389 DOI: 10.3390/molecules28020684] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Paraquat (PQ) and diquat (DQ) are quaternary ammonium herbicides which have been used worldwide for controlling the growth of weeds on land and in water. However, PQ and DQ are well known to be toxic. PQ is especially toxic to humans. Moreover, there is no specific antidote for PQ poisoning. The main treatment for PQ poisoning is hemoperfusion to reduce the PQ concentration in blood. Therefore, it is essential to be able to detect PQ and DQ concentrations in biological samples. This critical review summarizes the articles published from 2010 to 2022 and can help researchers to understand the development of the sample treatment and analytical methods for the determination of PQ and DQ in various types of biological samples. The sample preparation includes liquid-liquid extraction, solid-phase extraction based on different novel materials, microextration methods, and other methods. Analytical methods for quantifying PQ and DQ, such as different chromatography and spectroscopy methods, electrochemical methods, and immunological methods, are illustrated and compared. We focus on the latest advances in PQ and DQ treatment and the application of new technologies for these analyses. In our opinion, tandem mass spectrometry is a good choice for the determination of PQ and DQ, due to its high sensitivity, high selectivity, and high accuracy. As far as we are concerned, the best LOD of 4 pg/mL for PQ in serum can be obtained.
Collapse
|
10
|
Yu B, Mao Y, Li J, Wang J, Zhou B, Li P, Ma Y, Han Z. Hydrophobic expanded graphite-covered support to construct flexible and stable SERS substrate for sensitive determination by paste-sampling from irregular surfaces. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121708. [PMID: 35933774 DOI: 10.1016/j.saa.2022.121708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a promising technique for trace determination. More and more attention is focused on hybrid SERS substrates, which coupled with noble metal nanoparticles and carbon-based materials. Herein, expanded graphite (EG) is used to prepare EG-covered support by ultrasonic washing and filtration. Such support is flexible and can be cut into any shape. And the contact angle (θe) for Au nanorods (Au NRs) sol on the EG-covered support was 108.2° and the hydrophobic surface is helpful for Au NRs to construct 'hot spots' during evaporation. The limits of detection (LOD) for crystal violet (CV), thiram, malachite green (MG) and methylene blue (MB) were as low as 1 ppb, 50 ppb, 1 ppb and 1 ppb, respectively. Moreover, a fast and convenient 'paste-sampling' method could be employed for trace contaminants on real samples, because EG-based Au NRs substrate is of flexibility and porosity. Thus, CV residue on shrimp could be determined lower than 1 ppb and thiram residue on grapes could be identified lower than 50 ppb. In addition to high sensitivity, the stability of EG-based Au NRs substrate is also very good. Even after acid/alkali pretreatment (pH = 4∼10) or 30 min of thermal treatment (T = 20∼100 °C), the enhancement of the substrate remained stable. What's more, the substrate could be stored as long as 30 days. The highly stable, sensitive, cost-effective and easy-to-produce EG-based Au NRs substrates exhibit a great potential to promote application of SERS for routine analysis.
Collapse
Affiliation(s)
- Borong Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Yue Mao
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jiangli Li
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jiaosuo Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Binbin Zhou
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuanyuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Zhangang Han
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
11
|
Highly sensitive gold nanoparticles-modified silver nanorod arrays for determination of methyl viologen. Mikrochim Acta 2022; 189:479. [DOI: 10.1007/s00604-022-05590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
|
12
|
Biswas S, Devi YD, Sarma D, Namsa ND, Nath P. Gold nanoparticle decorated blu-ray digital versatile disc as a highly reproducible surface-enhanced Raman scattering substrate for detection and analysis of rotavirus RNA in laboratory environment. JOURNAL OF BIOPHOTONICS 2022; 15:e202200138. [PMID: 36054627 DOI: 10.1002/jbio.202200138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Detection and estimation of various biomolecular samples are often required in research and clinical laboratory applications. Present work demonstrates the functioning of a surface-enhanced Raman scattering (SERS) substrate that has been obtained by drop-casting of citrate-reduced gold nanoparticles (AuNPs) of average dimension of 23 nm on a bare blu-ray digital versatile disc (BR-DVD) substrate. The performance of the proposed SERS substrate has been initially evaluated with standard Raman active samples, namely malachite green (MG) and 1,2-bis(4-pyridyl)ethylene (BPE). The designed SERS substrate yields an average enhancement factor of 3.2 × 106 while maintaining reproducibility characteristics as good as 94% over the sensing region of the substrate. The usability of the designed SERS substrate has been demonstrated through the detection and analysis of purified rotavirus double-stranded RNA (dsRNA) samples in the laboratory environment condition. Rotavirus RNA concentrations as low as 10 ng/μL could be detected with the proposed sensing scheme.
Collapse
Affiliation(s)
- Sritam Biswas
- Applied Photonics and Nanophotonics Lab, Department of Physics, Tezpur University, Assam, India
| | | | - Dipjyoti Sarma
- Applied Photonics and Nanophotonics Lab, Department of Physics, Tezpur University, Assam, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Pabitra Nath
- Applied Photonics and Nanophotonics Lab, Department of Physics, Tezpur University, Assam, India
| |
Collapse
|
13
|
Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H. Applications of surface-enhanced Raman spectroscopy in environmental detection. ANALYTICAL SCIENCE ADVANCES 2022; 3:113-145. [PMID: 38715640 PMCID: PMC10989676 DOI: 10.1002/ansa.202200003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/11/2024]
Abstract
As the human population grows, the anthropogenic impacts from various agricultural and industrial processes produce unwanted contaminants in the environment. The accurate, sensitive and rapid detection of such contaminants is vital for human health and safety. Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. The aim of this review is to summarize recent advancements within SERS research as it applies to environmental detection, with a focus on research published or accessible from January 2021 through December 2021 including early-access publications. Our goal is to provide a wide breadth of information that can be used to provide background knowledge of the field, as well as inform and encourage further development of SERS techniques in protecting environmental quality and safety. Specifically, we highlight the characteristics of effective SERS nanosubstrates, and explore methods for the SERS detection of inorganic, organic, and biological contaminants including heavy metals, pharmaceuticals, plastic particles, synthetic dyes, pesticides, viruses, bacteria and mycotoxins. We also discuss the current limitations of SERS technologies in environmental detection and propose several avenues for future investigation. We encourage researchers to fill in the identified gaps so that SERS can be implemented in a real-world environment more effectively and efficiently, ultimately providing reliable and timely data to help and make science-based strategies and policies to protect environmental safety and public health.
Collapse
Affiliation(s)
- Lynn R. Terry
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Sage Sanders
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Rebecca H. Potoff
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Jacob W. Kruel
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Manan Jain
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Huiyuan Guo
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| |
Collapse
|
14
|
Wang Z, Cheng Y, Zeng M, Wang Z, Qin F, Wang Y, Chen J, He Z. Lotus (Nelumbo nucifera Gaertn.) leaf: A narrative review of its Phytoconstituents, health benefits and food industry applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|