1
|
Chen S, Qiu Y, Yu S, Ma N, Zhang X, Kong J. Eu-MOF-based highly sensitive and selective luminescence probe for trace, in situ and visual detection of flunitrazepam. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125226. [PMID: 39362042 DOI: 10.1016/j.saa.2024.125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Flunitrazepam, as an emerging new psychoactive substance classified as a third-generation drug that is more harmful and camouflaged, is gradually proliferating globally. Maliciously used as a criminal tool in homicide and rape cases, it has already caused serious harm to public safety and social stability. Owing to its special molecular structure, low concentration level and rapid metabolic process in the human body, accurate detection of flunitrazepam remains a major challenge, especially for real sample and on-site detection. In this paper, a lanthanide MOF (Eu-MOF) based on bi-ligand was constructed as a luminescence probe and used for the first time to detect trace amounts of flunitrazepam. The 'antenna effect' promotes strong luminescence of Eu-MOF, while the lower LUMO orbital energy level of flunitrazepam allows it to accept electrons from the electron donor leading to quenching of Eu-MOF luminescence. The probe has a high sensitivity and can detect flunitrazepam in the range of 0-800 μM with a detection limit as low as 73 nM. Moreover, flunitrazepam was detected in urine from real samples as well as in a variety of beverages to further validate its accuracy and practicality. The reported Eu-MOF represents one of the pioneering luminescence probes for the detection of flunitrazepam, which offers great promise for the on-site or on-line analysis of flunitrazepam.
Collapse
Affiliation(s)
- Siyu Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yunliang Qiu
- Department of Criminal Science and Technology, Nanjing Police College, Nanjing 210023, China
| | - Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Na Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Zhao Z, Yang S, Tang X, Feng L, Ding Z, Chen Z, Luo X, Deng R, Sheng J, Xie S, Chang K, Chen M. DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes. Biosens Bioelectron 2024; 246:115841. [PMID: 38006701 DOI: 10.1016/j.bios.2023.115841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
There is an urgent need to accurately quantify tumor-derived exosomes, which have emerged as promising non-invasive tumor diagnostic biomarkers. Herein, a bispecific-aptamer sandwich-type gold nanoparticle-modified electrochemical aptasensor was developed based on a four-way junction (4-WJ)-triggered dual rolling circle amplification (RCA)-assisted methylene blue (MB)/G-quadruplex strategy for extremely specific and sensitive exosome detection. This aptamer/exosome/aptamer sandwich-type design contained a CD63-specific aptamer and a cancerous mucin-1 (MUC1) protein-specific aptamer. The CD63 aptamer modified on a gold electrode captured exosomes, and then the sandwich-type aptasensor was formed with the addition of the MUC1 aptamer. The MUC1 aptamer's 3'-end sequence facilitated the formation of 4-WJ, assisted by a molecular beacon probe and a binary DNA probe. Subsequently, a dual-RCA reaction was triggered by binding to two cytosine-rich circle DNA templates at both ends of 4-WJ. Ultimately, dual-RCA products containing multiple G-quadruplex conformations were generated with the assistance of K+ to trap abundant MB indicators and amplify electrochemical signals. The aptasensor exhibited high specificity, sensitivity, repeatability, and stability toward MCF-7-derived exosomes, with a detection limit of 20 particles/mL and a linear range of 1 × 102 to 1 × 107 particles/mL. Moreover, it showed excellent applicability in clinical settings to recover exosomes in normal human serum. Our aptasensor is anticipated to serve as a versatile platform for detecting various specific aptamer-based targets in biomedical and bioanalytical applications.
Collapse
Affiliation(s)
- Zhuyang Zhao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Sha Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Liu Feng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Zishan Ding
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Zhiguo Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Xing Luo
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Ruijia Deng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Jing Sheng
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Shuang Xie
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China; College of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), 30 Gaotanyan, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
6
|
Emerging trends in point-of-care sensors for illicit drugs analysis. Talanta 2022; 238:123048. [PMID: 34801905 DOI: 10.1016/j.talanta.2021.123048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Consumption of illicit narcotic drugs and fatal or criminal activities under their influence has become an utmost concern worldwide. These drugs influence an individual's feelings, perceptions, and emotions by altering the state of consciousness and thus can result in serious safety breaches at critical workplaces. Point-of-care drug-testing devices have become the need-of-the-hour for many sections such as the law enforcement agencies, the workplaces, etc. for safety and security. This review focuses on the recent progress on various electrochemical and optical nanosensors developed for the analysis of the most common illicit drugs (or their metabolites) such as tetrahydrocannabinol (THC), cocaine (COC), opioids (OPs), amphetamines & methamphetamine, and benzodiazepine (BZDs). The paper also highlights the sensitivity and selectivity of various sensing modalities along with evolving parameters such as real-time monitoring and measurement via a smart user interface. An overall outlook of recent technological advances in point of care (POC) devices and guided insights and directions for future research is presented.
Collapse
|
8
|
All solid-state miniaturized potentiometric sensors for flunitrazepam determination in beverages. Mikrochim Acta 2021; 188:192. [PMID: 34008054 DOI: 10.1007/s00604-021-04851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/10/2021] [Indexed: 01/12/2023]
Abstract
Flunitrazepam is one of the frequently used hypnotic drugs to incapacitate victims for sexual assault. Appropriate diagnostic tools should be available to victims regarding the growing concern about "date-rape drugs" and their adverse impact on society. Miniaturized screen-printed potentiometric sensors offer crucial point-of-care devices that alleviate this serious problem. In this study, all solid-state screen-printed potentiometric flunitrazepam sensors have been designed. The paper device was printed with silver and carbon ink. Formation of an aqueous layer in the interface between carbon-conducting material and ion-sensing membrane nevertheless poses low reproducibility in the solid-contact electrodes. Accordingly, poly(3,4-ethylenedioxythiophene) (PEDT) nano-dispersion was applied as a conducting hydrophobic polymer on the electrode surface to curb water accumulation. Conditioning of ion-sensing membrane in the vicinity of reference membrane has been considered carefully using special protocol. Electrochemical characteristics of the proposed PEDT-based sensor were calculated and compared favorably to PEDT-free one. The miniaturized device was successfully used for the determination of flunitrazepam in carbonated soft drinks, energy drink, and malt beverage. Statistical comparison between the proposed sensor and official method revealed no significant difference. Nevertheless, the proposed sensor provides simple and user-friendly diagnostic tool with less equipment for on-site determination of flunitrazepam.
Collapse
|