1
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
2
|
Zhou Y, Tian M, Li R, Zhang Y, Zhang G, Zhang C, Shuang S. Ultrasensitive Electrochemical Platform for Dopamine Detection Based on CoNi-MOF@ERGO Composite. ACS Biomater Sci Eng 2023; 9:5599-5609. [PMID: 37656436 DOI: 10.1021/acsbiomaterials.3c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
An electrochemical sensor applied for dopamine (DA) detection was constructed. An easy static way was used to synthesize bimetallic CoNi-MOF. Next, it was mixed with graphene oxide (GO) under ultrasound to get a uniform suspension. Subsequently, the solution was coated on the glassy carbon electrode (GCE) to form CoNi-MOF@ERGO/GCE by the electrochemical reduction method. The interaction between CoNi-MOF and electrochemically reduced graphene oxide (ERGO) enhances the electrocatalytic performance for DA detection. CoNi-MOF@ERGO/GCE has a wider linear range (0.1-400 μM) and a lower detection limit (0.086 μM) under optimum conditions. Furthermore, it has been applied to test DA in human serum samples. The results reveal that the DA sensor shows excellent performance, which will provide a novel idea for more sensitive and quicker DA detection.
Collapse
Affiliation(s)
- Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Min Tian
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ruichun Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
4
|
Xue YF, Liu J, Ge Q, Jiang N, Zhao WF, Liu M, Cong H, Zhao JL. Supramolecule-Controlled Enantioselectivity for Electrochemical Asymmetric Hydrogenation of Coumarins with a Chiral Macrocyclic Compound. Org Lett 2023; 25:2632-2636. [PMID: 37036807 DOI: 10.1021/acs.orglett.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
The supramolecular strategy was subjected to the asymmetric hydrogenation of 4-methylumbelliferone by electrochemical reduction in the presence of a chiral macrocyclic multifarane[3,3], which offered a l-7-hydroxy-4-methylchroman-2-one product with a chemical yield of 65% and enantioselectivity up to >99% ee. The high stability of the developed chiral supramolecular electrode guaranteed the recyclability and repeatability in the electrolysis, and therefore, the application was extended to more coumarin derivatives to provide satisfactory chemical yields and enantioselectivities.
Collapse
Affiliation(s)
- Yan-Fang Xue
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jie Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Nan Jiang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Wen-Feng Zhao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Mao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jiang-Lin Zhao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Zagitova L, Yarkaeva Y, Zagitov V, Nazyrov M, Gainanova S, Maistrenko V. Voltammetric chiral recognition of naproxen enantiomers by N-tosylproline functionalized chitosan and reduced graphene oxide based sensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Niu Q, Jin P, Huang Y, Fan L, Zhang C, Yang C, Dong C, Liang W, Shuang S. A selective electrochemical chiral interface based on a carboxymethyl-β-cyclodextrin/Pd@Au nanoparticles/3D reduced graphene oxide nanocomposite for tyrosine enantiomer recognition. Analyst 2022; 147:880-888. [DOI: 10.1039/d1an02262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium@gold nanoparticle modified three-dimensional-reduced graphene oxide was coupled with carboxymethyl-β-cyclodextrin to form a novel nanocomposite, which served as an effective chiral sensing interface for electrochemical enantiorecognition.
Collapse
Affiliation(s)
- Qingfang Niu
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Pengyue Jin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Yu Huang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Lifang Fan
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caihong Zhang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Chuan Dong
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
7
|
Zeng Q, Long Q, Lu J, Wang L, You Y, Yuan X, Zhang Q, Ge Q, Cong H, Liu M. Synthesis of a novel aminobenzene-containing hemicucurbituril and its fluorescence spectral properties with ions. Beilstein J Org Chem 2021; 17:2840-2847. [PMID: 34956406 PMCID: PMC8685562 DOI: 10.3762/bjoc.17.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
A novel hemicucurbituril-based macrocycle, alternately consisting of amidobenzene and 2-imidazolidione moieties was designed and synthesized. Based on the fragment coupling strategy, nitrobenzene-containing hemicucurbituril was firstly prepared facilely under alkaline environment, and reduction of the nitro groups produced the desired amidobenzene-containing hemicucurbituril. As an original fluorescent chemosensor, it exhibited strong interactions with Fe3+ over other metal cations. The experimental evidence of fluorescence spectra suggested that a 1:1 complex was formed between this macrocycle and Fe3+ with an association constant up to (2.1 ± 0.3) × 104 M−1. Meanwhile, this macrocycle showed no obvious or only slight enhancement of the fluorescence intensity with selected anions.
Collapse
Affiliation(s)
- Qingkai Zeng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Qiumeng Long
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Jihong Lu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Li Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Yuting You
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Xiaoting Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Qianjun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Qingmei Ge
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Hang Cong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| | - Mao Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou Province 550025, PR China
| |
Collapse
|
8
|
Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Supramolecular chiral electrochemical reduction of acetophenone with hybridization of a chiral multifarene and Au nanoparticles. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|