1
|
Zhao Y, Ji J, Wu Y, Chen S, Xu M, Cao X, Liu H, Wang Z, Bi H, Guan G, Tang R, Tao H, Zhang H. Nonylphenol and its derivatives: Environmental distribution, treatment strategy, management and future perspectives. CHEMOSPHERE 2024; 352:141377. [PMID: 38346514 DOI: 10.1016/j.chemosphere.2024.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
In recent years, emerging pollutants, including nonylphenol (NP) and nonylphenol ethoxylate (NPE), have become a prominent topic. These substances are also classified as persistent organic pollutants. NP significantly affects the hormone secretion of organisms and exhibits neurotoxicity, which can affect the human hippocampus. Therefore, various countries are paying increased attention to NP regulation. NPEs are precursors of NPs and are widely used in the manufacture of various detergents and lubricants. NPEs can easily decompose into NPs, which possess strong biological and environmental toxicity. This review primarily addresses the distribution, toxicity mechanisms and performance, degradation technologies, management policies, and green alternative reagents of NPs and NPEs. Traditional treatment measures have been unable to completely remove NP from wastewater. With the progressively tightening management and regulatory policies, identifying proficient and convenient treatment methods and a sustainable substitute reagent with comparable product effectiveness is crucial.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Jie Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yao Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shiqi Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Mengyao Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xiang Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hanlin Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zheng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hengyao Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Guian Guan
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ruixi Tang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - He Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
2
|
Fan Y, Chen C, Zhao X, Tang N, Zhang Q, Li X. Molecularly imprinted composite membranes with interleaved imprinted network structure for highly selective separation of acteoside. J Chromatogr A 2023; 1707:464319. [PMID: 37639848 DOI: 10.1016/j.chroma.2023.464319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Acteoside (ACT) is one of the phenylethanoid glycosides in Cistanche tubulosa. The ACT molecules have high medicinal value, but the content of ACT is scarce. Therefore, it is imperative to develop the ACT-based molecularly imprinted composite membranes (A-MICMs) with highly selective separation of ACT. In this study, the amine-polyhedral oligomeric sesquisiloxanes (NH2-POSS) were uniformly introduced into polydopamine modified polyvinylidene fluoride (pDA@PVDF) membranes to fabricate NH2-POSS-pDA@PVDF. Then, the ACT-imprinted layers were synthesized on the surface of NH2-POSS-pDA@PVDF to obtain A-MICMs. The results showed that the optimal conditions were 180 mg DA, 12 h DA self-polymerization time, 400 mg NH2-POSS and 10 h washing time for the synthesis of A-MICMs. The results of adsorption isotherm experiments showed that there was a single layer adsorbate analyte on the A-MICMs. The results of adsorption kinetic experiments showed that chemisorption mechanism played a major function in the adsorption process of A-MICMs for ACT. The A-MICMs exhibited the maximum rebinding capacity of 98.37 mg⋅g-1, an excellent rebinding selectivity of 4.63, and the permselectivity of 7.02. The same A-MICMs kept 95.99% of the maximum rebinding capacity for ACT after 5 adsorption-desorption cycles. The designed A-MICMs with the interleaved imprinted network structure have a potential to be applied to the highly selective separation of bioactive components from natural products.
Collapse
Affiliation(s)
- Yingying Fan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Chen Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xiaobin Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Na Tang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Qiong Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
3
|
Xu X, Xie Y, Guo P, Shi Y, Sun M, Zhou J, Wang C, Han C, Liu J, Li T. Facile synthesis of novel helical imprinted fibers based on zucchini-derived microcoils for efficient recognition of target protein in biological sample. Food Chem 2023; 404:134645. [DOI: 10.1016/j.foodchem.2022.134645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
4
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
5
|
Wang D, Chen X, Feng J, Sun M. Recent advances of ordered mesoporous silica materials for solid-phase extraction. J Chromatogr A 2022; 1675:463157. [PMID: 35623192 DOI: 10.1016/j.chroma.2022.463157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
This review mainly focuses on the development and application of ordered mesoporous silica materials for solid-phase extraction in recent years. It overviews not only bare mesoporous silica but also the functionalized mesoporous silica with organic groups, molecularly imprinted polymers, and magnetic materials. These mesoporous silica materials were used as the extraction adsorbents in cartridge solid-phase extraction, dispersive solid-phase extraction, magnetic solid-phase extraction, micro-solid-phase extraction and matrix solid phase dispersion. Coupled with atomic emission spectrometry, chromatography or other detection methods, these techniques efficiently extracted and sensitively determined various targets, such as metal ions, perfluorocarboxylic acids, pesticides, drugs, endocrine disruptors, phenols, flavanones, polycyclic aromatic hydrocarbons, parabens and so on. Based on unique advantages of mesoporous silica materials, the developed analytical method successfully analyzed different matrix samples, like environmental water samples, soil samples, food samples, biological samples and cosmetics. In addition, the prospects of these materials in solid-phase extraction are presented, which can offer an outlook for the further development and applications.
Collapse
Affiliation(s)
- Dan Wang
- School of Narcotics Control and Public Order Studies, School of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854 P. R. China
| | - Xueguo Chen
- School of Narcotics Control and Public Order Studies, School of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854 P. R. China
| | - Juanjuan Feng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Min Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
6
|
Gomes NO, Mendonça CD, Machado SAS, Oliveira ON, Raymundo-Pereira PA. Flexible and integrated dual carbon sensor for multiplexed detection of nonylphenol and paroxetine in tap water samples. Mikrochim Acta 2021; 188:359. [PMID: 34599426 DOI: 10.1007/s00604-021-05024-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Multiplex detection of emerging pollutants is essential to improve quality control of water treatment plants, which requires portable systems capable of real-time monitoring. In this paper we describe a flexible, dual electrochemical sensing device that detects nonylphenol and paroxetine in tap water samples. The platform contains two voltammetric sensors, with different working electrodes that were either pretreated or functionalized. Each working electrode was judiciously tailored to cover the concentration range of interest for nonylphenol and paroxetine, and square wave voltammetry was used for detection. An electrochemical pretreatment with sulfuric acid on the printed electrode enabled a selective detection of nonylphenol in 1.0-10 × 10-6 mol L-1 range with a limit of detection of 8.0 × 10-7 mol L-1. Paroxetine was detected in the same range with a limit of detection of 6.7 × 10-7 mol L-1 using the printed electrode coated with a layer of carbon spherical shells. Simultaneous detection of the two analytes was achieved in tap water samples within 1 min, with no fouling and no interference effects. The long-term monitoring capability of the dual sensor was demonstrated in phosphate buffer for 45 days. This performance is statistically equivalent to that of high-performance liquid chromatography (HPLC) for water analysis. The dual-sensor platform is generic and may be extended to other water pollutants and clinical biomarkers in real-time monitoring of the environment and health conditions. Silver pseudo-reference electrodes for paroxetine (REP) and nonylphenol (REN), working electrodes for paroxetine (WP) and nonylphenol (WN), and auxiliary electrode (AE). USP refers to the University of Sao Paulo. "Red" is reduced form and "Oxi" is oxidized form of analytes.
Collapse
Affiliation(s)
- Nathalia O Gomes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Camila D Mendonça
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Sergio A S Machado
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, CEP 13566-590, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, CEP 13560-970, Brazil
| | - Paulo A Raymundo-Pereira
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, CEP 13560-970, Brazil.
| |
Collapse
|