1
|
He Z, Lin H, Sui J, Wang K, Wang H, Cao L. Seafood waste derived carbon nanomaterials for removal and detection of food safety hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172332. [PMID: 38615776 DOI: 10.1016/j.scitotenv.2024.172332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.
Collapse
Affiliation(s)
- Ziyang He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Huiying Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
2
|
Wang Q, Wang M, Jia M, She Y, Wang J, Zheng L, Abd El-Aty AM. Development of a specific and sensitive method for the detection of glyphosate pesticide and its metabolite in tea using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem quadrupole mass spectrometry. J Chromatogr A 2023; 1705:464209. [PMID: 37453174 DOI: 10.1016/j.chroma.2023.464209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Glyphosate, a widely used herbicide, and its primary metabolite aminomethyl phosphonic acid have been found to cause environmental and ecological issues and threaten human health. The conventional pretreatment method was insufficient for the extraction, concentration, and enrichment of trace substances, resulting in poor specificity. Thus, our objective was to develop a method for glyphosate pesticide detection using dummy molecularly imprinted solid-phase extraction (DMI-SPE) combined with liquid chromatography-tandem quadrupole mass spectrometry (DMI-SPE-LC/MS/MS). The sol-gel method was used to prepare the molecularly imprinted material, using glyphosine as the dummy template molecule, to achieve specific adsorption to glyphosate and reduce costs. The optimized polymerization conditions achieved maximum adsorption of 28.6 µg/mg glyphosate by the molecularly imprinted material. The established DMI-SPE-LC/MS/MS method was used to detect glyphosate and its metabolite (aminomethyl)phosphonic acid in tea. The concentration ranges of glyphosate and (aminomethyl)phosphonic acid (from 0.05 to 4 µg/mL) were linear with correlation coefficients of 0.999 and 0.991, respectively. The recoveries of (aminomethyl)phosphonic acid at three spiked levels ranged from 79.95% to 83.74%, with RSDs between 6.40% and 7.45%, while the recoveries of glyphosate ranged from 98.69% to 106.26%, with RSDs between 0.91% and 1.18%. Our results demonstrate that the developed DMI-SPE-LC/MS/MS method achieves high sensitivity and specific detection of glyphosate and its metabolite (aminomethyl)phosphonic acid in tea matrices.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China; College of Biological and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China.
| | - Minghong Jia
- College of Biological and Resources Environment, Beijing University of Agriculture, Beijing 102206, China.
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China
| | - Jing Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China
| | - Lufei Zheng
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, 100081 Beijing, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| |
Collapse
|
3
|
Manouchehri M, Seidi S, Tavasolinoor A, Razeghi Y. A new approach of magnetic field application in miniaturized pipette-tip extraction for trace analysis of four synthetic hormones in breast milk samples. Food Chem 2023; 409:135222. [PMID: 36586256 DOI: 10.1016/j.foodchem.2022.135222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Herein, a novel homemade electrical device was designed, including two pieces of external neodymium magnets, providing a reciprocating magnetic field to introduce a magnetic-assisted dispersive pipette-tip micro solid-phase extraction. To evaluate the performance efficiency of the proposed method, a novel magnetic calcined GO/SiO2@Co-Fe nanocube sorbent was synthesized, filled into the pipette-tip, exposed to the reciprocating magnetic field, and applied for the preconcentration of some hormone therapy drugs in human biological matrices. The effective adsorption and desorption parameters were optimized using a rotatable central composite design and one-variable-at-a-time approaches. Under the optimized conditions, the target analytes' detection limits were found to be below 0.02 ng mL-1. Moreover, the calibration curves were linear in the range of 0.03-500.00 ng mL-1 (R2 > 0.9966), with RSDs% less than 7.8 %. Eventually, the established method was applied to extract the analytes from breast milk samples, followed by LC-ESI-MS/MS analysis.
Collapse
Affiliation(s)
- Mahshid Manouchehri
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran.
| | - Ali Tavasolinoor
- Department of Computer Engineering, Shahre-Rey Branch, Islamic Azad University, Tehran, Iran
| | - Yasaman Razeghi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran; Nanomaterial, Separation and Trace Analysis Research Lab, K.N. Toosi University of Technology, P.O. Box 16315-1618, Postal Code 15418-49611, Tehran, Iran
| |
Collapse
|
4
|
Donato L, Nasser II, Majdoub M, Drioli E. Green Chemistry and Molecularly Imprinted Membranes. MEMBRANES 2022; 12:472. [PMID: 35629798 PMCID: PMC9144692 DOI: 10.3390/membranes12050472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Technological progress has made chemistry assume a role of primary importance in our daily life. However, the worsening of the level of environmental pollution is increasingly leading to the realization of more eco-friendly chemical processes due to the advent of green chemistry. The challenge of green chemistry is to produce more and better while consuming and rejecting less. It represents a profitable approach to address environmental problems and the new demands of industrial competitiveness. The concept of green chemistry finds application in several material syntheses such as organic, inorganic, and coordination materials and nanomaterials. One of the different goals pursued in the field of materials science is the application of GC for producing sustainable green polymers and membranes. In this context, extremely relevant is the application of green chemistry in the production of imprinted materials by means of its combination with molecular imprinting technology. Referring to this issue, in the present review, the application of the concept of green chemistry in the production of polymeric materials is discussed. In addition, the principles of green molecular imprinting as well as their application in developing greenificated, imprinted polymers and membranes are presented. In particular, green actions (e.g., the use of harmless chemicals, natural polymers, ultrasound-assisted synthesis and extraction, supercritical CO2, etc.) characterizing the imprinting and the post-imprinting process for producing green molecularly imprinted membranes are highlighted.
Collapse
Affiliation(s)
- Laura Donato
- Institute on Membrane Technology, CNR-ITM, University of Calabria, Via P. Bucci, 17/C, 87030 Rende, CS, Italy;
| | - Imen Iben Nasser
- Faculté des Sciences de Monastir, Université de Monastir, Bd. de l’Environnement, Monastir 5019, Tunisia; (I.I.N.); (M.M.)
| | - Mustapha Majdoub
- Faculté des Sciences de Monastir, Université de Monastir, Bd. de l’Environnement, Monastir 5019, Tunisia; (I.I.N.); (M.M.)
| | - Enrico Drioli
- Institute on Membrane Technology, CNR-ITM, University of Calabria, Via P. Bucci, 17/C, 87030 Rende, CS, Italy;
- Department of Engineering and of the Environment, University of Calabria, 87030 Rende, CS, Italy
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Preparation of porous carbon nanomaterials and their application in sample preparation: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|