1
|
Mohammadzadeh M, Bello A, Lassen SB, Brandt KK, Risteelä S, Leiviskä T. Pilot-scale adsorption of pharmaceuticals from municipal wastewater effluent using low-cost magnetite-pine bark: Regeneration/enumeration of viable bacteria with a study on their biotoxicity. ENVIRONMENTAL RESEARCH 2025; 268:120774. [PMID: 39761781 DOI: 10.1016/j.envres.2025.120774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm3) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit. In the next stage, a four-month pilot-scale adsorption test was performed using a large column (bed volume: 21 L) filled with BC and MPB. A variety of compounds were removed after the pilot-scale column, including trimethoprim (99.7%), hydrochlorothiazide (81.8%), candesartan (26.0%), carbamazepine (86.1%), ketoprofen (89.4%), clindamycin (86.6%), oxazepam (91.3%), sulfadiazine (38.6%), sulfamethoxazole (58.3%), tramadol (88.9%), zopiclone (73.5%), venlafaxine (93.7%), furosemide (93.5%), fexofenadine (91.6%) and losartan (81.2%). The enumeration of viable bacteria in the pilot-scale column samples revealed that regenerating the BC-MPB bed with NaOH increased bacterial counts in the treated water due to the desorption of adsorbed bacteria from the bed. A biotoxicity study using the Nitrosomonas europaea bioreporter strain indicated that the wastewater was generally non-toxic to this nitrifying bacterium and regeneration of pilot-scale column samples caused short-time toxicity immediately after regeneration. The study confirms that MPB is efficient for the adsorption of pharmaceuticals and can be applied in column mode with a support material such as BC. Therefore, MPB is a viable alternative for AC for the remediation of pharmaceutical-contaminated wastewaters.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland.
| | - Adedayo Bello
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland
| | - Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Sofia Risteelä
- Oulu Waterworks, P.O. BOX 35, FI-90015, City of Oulu, Finland
| | - Tiina Leiviskä
- Chemical Process Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Oulu, Finland
| |
Collapse
|
2
|
Hassan AF, Elhassanein A, Khoj MA, Shaltout WA. Fabrication of graphitic carbon nitride/gum Arabic/potassium carrageenan composite for efficient adsorption of erythromycin: Kinetic and thermodynamic studies. Int J Biol Macromol 2024; 276:133999. [PMID: 39033898 DOI: 10.1016/j.ijbiomac.2024.133999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Erythromycin (ERY) molecules are robust to the environment and hard to remove due to their aromatic structure. Nowadays, numerous researches have reported that the ERY amount in water is above the standard level and its removal is necessary. Here, we prepared three solid adsorbents: graphitic carbon nitride (g-C3N4), potassium carrageenan beads (Cr), and graphitic carbon nitride/gum Arabic/potassium carrageenan composite (g-ACr). Several techniques such as XRD, SEM, TEM, TGA, ATR-FTIR, Zeta potential, and N2 adsorption were employed to characterize the fabricated adsorbents. Five essential factors of adsorbent dose, initial ERY concentration, contact time, temperature, and pH were optimized to investigate the batch adsorption of ERY. The maximum adsorption capacity of 356.12 mg/g was attained by g-ACr composite at an adsorbent dose of 1.25 g/L, contact time of 6 h, and pH 7 at 15 °C. The data showed that the experimental findings exhibited the best agreement with Langmuir, Temkin, and DR isotherm models, in addition to the kinetic models of pseudo-second-order, Elovich, and intra-particle diffusion. The evaluated thermodynamic factors designated that the ERY adsorption is endothermic, physisorption, favorable, and spontaneous process. The g-ACr reusability displayed a decline in the adsorption capacity after seven adsorption/desorption runs by 5.7 %. Finally, this work outcomes depict that g-ACr composite is an efficient reusable adsorbent for ERY elimination from wastewater.
Collapse
Affiliation(s)
- Asaad F Hassan
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ahmed Elhassanein
- Department of Mathematics, College of Science, University of Bisha, P. O. Box 551, Bisha 61922, Saudi Arabia
| | - Manal A Khoj
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Walaa A Shaltout
- Survey of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Egypt.
| |
Collapse
|
3
|
Murtaza G, Ahmed Z, Usman M, Iqbal R, Zulfiqar F, Tariq A, Ditta A. Physicochemical properties and performance of non-woody derived biochars for the sustainable removal of aquatic pollutants: A systematic review. CHEMOSPHERE 2024; 359:142368. [PMID: 38763397 DOI: 10.1016/j.chemosphere.2024.142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China; College of Life Science, Shenyang Normal University, Shenyang, 110034, China.
| | - Muhammad Usman
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minghang District, Shanghai, 200240, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Akash Tariq
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China; Xinjiang Institute of Ecology & Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), 18000, Khyber Pakhtunkhwa, Pakistan; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
4
|
Saviano L, Brouziotis AA, Suarez EGP, Siciliano A, Spampinato M, Guida M, Trifuoggi M, Del Bianco D, Carotenuto M, Spica VR, Lofrano G, Libralato G. Catalytic Activity of Rare Earth Elements (REEs) in Advanced Oxidation Processes of Wastewater Pollutants: A Review. Molecules 2023; 28:6185. [PMID: 37687014 PMCID: PMC10488708 DOI: 10.3390/molecules28176185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, sewage treatment plants did not effectively remove emerging water pollutants, leaving potential threats to human health and the environment. Advanced oxidation processes (AOPs) have emerged as a promising technology for the treatment of contaminated wastewater, and the addition of catalysts such as heavy metals has been shown to enhance their effectiveness. This review focuses on the use of rare earth elements (REEs) as catalysts in the AOP process for the degradation of organic pollutants. Cerium and La are the most studied REEs, and their mechanism of action is based on the oxygen vacancies and REE ion concentration in the catalysts. Metal oxide surfaces improve the decomposition of hydrogen peroxide to form hydroxide species, which degrade the organics. The review discusses the targets of AOPs, including pharmaceuticals, dyes, and other molecules such as alkaloids, herbicides, and phenols. The current state-of-the-art advances of REEs-based AOPs, including Fenton-like oxidation and photocatalytic oxidation, are also discussed, with an emphasis on their catalytic performance and mechanism. Additionally, factors affecting water chemistry, such as pH, temperature, dissolved oxygen, inorganic species, and natural organic matter, are analyzed. REEs have great potential for enhancing the removal of dangerous organics from aqueous solutions, and further research is needed to explore the photoFenton-like activity of REEs and their ideal implementation for wastewater treatment.
Collapse
Affiliation(s)
- Lorenzo Saviano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Marisa Spampinato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- CeSMA Advanced Metrological and Technological Service Center, University of Naples Federico II, 80126 Naples, Italy
| | - Donatella Del Bianco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| | - Maurizio Carotenuto
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano, Italy;
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (V.R.S.); (G.L.)
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (L.S.); (A.A.B.); (E.G.P.S.); (M.S.); (M.G.); (D.D.B.); (G.L.)
| |
Collapse
|
5
|
Gu J, Liu Z, Jia A, Wang Y, Li N, Liu Z, Li Y, Zhang H. New insight into adsorption and co-adsorption of chlortetracycline hydrochloride and ciprofloxacin hydrochloride by Ga-based metal-organic gel/sodium alginate composite beads. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Du L, Ahmad S, Liu L, Wang L, Tang J. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159815. [PMID: 36328262 DOI: 10.1016/j.scitotenv.2022.159815] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been used in massive quantities for human and animal medical treatment, and antibiotic resistance genes (ARGs) are of great concern worldwide. Antibiotics and ARGs are exposed to the natural environment through the discharge of medical wastewater, causing great harm to the environment and human health. Biochar has been widely used as a green and efficient adsorbent to remove pollutants. However, pristine and unmodified biochars are not considered sufficient and efficient to cope with the current serious water pollution. Therefore, researchers have chosen to improve the adsorption capacity of biochar through different modification methods. To have a better understanding of the application of modified biochar, this review summarizes the biochar modification methods and their performance, particularly, molecular imprinting and biochar aging are outlined as new modification methods, influencing factors of biochar and modified biochar in adsorption of antibiotics and ARGs and adsorption mechanisms, wherein adsorption mechanism of ARGs on biochar is found to be different than that of antibiotics. After that, the directions of biochar and modified biochar worthy of research and the issues that need attention are proposed. It can be noted that under the current dual carbon policy, biochar may have wider application prospects in future.
Collapse
Affiliation(s)
- Linqing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Simultaneous Removal of Polymers with Different Ionic Character from Their Mixed Solutions Using Herb-Based Biochars and Activated Carbons. Molecules 2022; 27:molecules27217557. [DOI: 10.3390/molecules27217557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Nettle and the sage herbs were used to obtain carbonaceous adsorbents. For the biochar preparation the precursors were dried and subjected to conventional pyrolysis. Activated carbons were obtained during precursor impregnation with phosphoric(V) acid and multistep pyrolysis. The textural parameters and acidic-basic properties of the obtained adsorbents were studied. The activated carbons prepared from the above herbs were characterized by the largely developed specific surface area. The obtained carbonaceous adsorbents were used for polymer removal from aqueous solution. Poly(acrylic acid) (PAA) and polyethylenimine (PEI) were chosen, due to their frequent presence in wastewater resulting from their extensive usage in many industrial fields. The influence of polymers on the electrokinetic properties of activated carbon were considered. PAA adsorption caused a decrease in the zeta potential and the surface charge density, whereas PEI increased these values. The activated carbons and biochars were used as polymer adsorbents from their single and binary solutions. Both polymers showed the greatest adsorption at pH 3. Poly (acrylic acid) had no significant effect on the polyethylenimine adsorbed amount, whereas PEI presence decreased the amount of PAA adsorption. Both polymers could be successfully desorbed from the activated carbons and biochar surfaces. The presented studies are innovatory and greatly required for the development of new environment protection procedures.
Collapse
|
8
|
Gęca M, Wiśniewska M, Nowicki P. Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems - A review. Adv Colloid Interface Sci 2022; 305:102687. [PMID: 35525090 DOI: 10.1016/j.cis.2022.102687] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Biochars are obtained by biomass pyrolysis, whereas activated carbon is a biochar that has undergone chemical or physical activation. Owing to the large surface area and easy surface modification both solids are widely applied as adsorbents. They are low-costs materials, they could be regenerated and their disposal is not troublesome. Adsorption of heavy metals, dyes, pharmaceuticals on the surface of biochars and activated carbons, from simple systems of adsorbate containing only one compound, are described extensively in the literature. The present paper provides an overview of reports on adsorption of inorganic and organic compounds onto these two types of adsorbents from the mixed adsorbate systems. The described adsorbate systems have been divided into those consisting of: two or more inorganic ions, two or more organic compounds and both of them (inorganic and organic ones). The research of this type is carried out much less frequently due to the more complicated description of interactions in the mixed adsorbate systems.
Collapse
|
9
|
Tang Y, Hao J, He S, Luo T, Wu L, Wang X, Guo J. Characterization of Edible Fungus Substrate Modified Biochar and Its Adsorption Capacity for Ciprofloxacin Hydrochloride. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1153-1158. [PMID: 35061049 DOI: 10.1007/s00128-022-03463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, silver-ytterbium-modified biochar (MBC) was prepared to adsorb ciprofloxacin hydrochloride. It was compared with biochar (BC) and alkali-modified biochar (NBC). The results show that the MBC had more functional groups and a larger specific surface area than the BC and NBC. The saturated adsorption capacity of the MBC (312.500 mg g-1) was 3 and 19 times higher than that of the NBC and BC, respectively. The adsorption data were consistent with the pseudo-second-order kinetics model and the Langmuir isotherm model. In addition, the mechanism of CIP adsorption onto NBC and MBC may be dominated by π-π electron donor-accepter interactions. C-O, C=O and -NH2 play important roles in adsorption, and Ag-O and Yb-O groups participate in the adsorption of CIP onto MBC.
Collapse
Affiliation(s)
- Yuhong Tang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jiajie Hao
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shixing He
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Tingting Luo
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Lieshan Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Xinting Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jianqiang Guo
- Guangxi Jiangyi Environmental Technology Co. Ltd, Nanning, 530004, China
| |
Collapse
|
10
|
Promising adsorptive materials derived from agricultural and industrial wastes for antibiotic removal: A comprehensive review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
El-Shafie AS, Ahsan I, Radhwani M, Al-Khangi MA, El-Azazy M. Synthesis and Application of Cobalt Oxide (Co3O4)-Impregnated Olive Stones Biochar for the Removal of Rifampicin and Tigecycline: Multivariate Controlled Performance. NANOMATERIALS 2022; 12:nano12030379. [PMID: 35159724 PMCID: PMC8839773 DOI: 10.3390/nano12030379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023]
Abstract
Cobalt oxide (Co3O4) nanoparticles supported on olive stone biochar (OSBC) was used as an efficient sorbent for rifampicin (RIFM) and tigecycline (TIGC) from wastewater. Thermal stabilities, morphologies, textures, and surface functionalities of two adsorbents; OSBC and Co-OSBC were compared. BET analysis indicated that Co-OSBC possesses a larger surface area (39.85 m2/g) and higher pore-volume compared to the pristine OSBC. FT-IR analysis showed the presence of critical functional groups on the surface of both adsorbents. SEM and EDX analyses showed the presence of both meso- and macropores and confirmed the presence of Co3O4 nanoparticles on the adsorbent surface. Batch adsorption studies were controlled using a two-level full-factorial design (2k-FFD). Adsorption efficiency of Co-OSBC was evaluated in terms of the % removal (%R) and the sorption capacity (qe, mg/g) as a function of four variables: pH, adsorbent dose (AD), drug concentration, and contact time (CT). A %R of 95.18% and 75.48% could be achieved for RIFM and TIGC, respectively. Equilibrium studies revealed that Langmuir model perfectly fit the adsorption of RIFM compared to Freundlich model for TIGC. Maximum adsorption capacity (qmax) for RIFM and TIGC was 61.10 and 25.94 mg/g, respectively. Adsorption kinetics of both drugs could be best represented using the pseudo-second order (PSO) model.
Collapse
Affiliation(s)
- Ahmed S. El-Shafie
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.E.-S.); (I.A.)
| | - Insharah Ahsan
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.E.-S.); (I.A.)
| | - Mohamed Radhwani
- Al Jazeera Academy, Doha P.O. Box 22250, Qatar; (M.R.); (M.A.A.-K.)
| | | | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.E.-S.); (I.A.)
- Correspondence:
| |
Collapse
|