1
|
Kathar N, Rajput N, Jadav T, Sengupta P. Potential degradation products of abemaciclib: Identification and structural characterization employing LC-Q/TOF-MS and NMR including mechanistic explanation. J Pharm Biomed Anal 2024; 237:115762. [PMID: 37844364 DOI: 10.1016/j.jpba.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Degradation products are the potential drug impurities that can be generated during transport and storage of pharmaceuticals. Before this study, degradation chemistry and potential degradation products of abemaciclib (ABM) were unknown. Moreover, no stability-indicating analytical method was available that can be used to analyse ABM in presence of its degradation products. In this study, stress testing on ABM was carried out under oxidative, thermal, photolytic (UV & visible), and hydrolytic (acid, alkaline, and neutral) degradation conditions. The study revealed that ABM is susceptible to photolytic, oxidative, and thermal stress leading to the formation of five degradation products (DPs). ABM and its degradation products were chromatographically separated employing a developed RP-HPLC-based stability-indicating analytical method. The method was transferred to an LC-Q-TOF system for further analysis. To elucidate the structure of degradation products, fragmentation pathway of ABM was initially established through high-resolution mass spectrometry (HRMS). Subsequently, mass fragmentation pathways of all the DPs have been established through HRMS and MSn based analysis. The major degradation product was isolated and fully characterized using atmospheric chemical ionization-mass spectrometry and nuclear magnetic resonance techniques. ABM showed extensive degradation under oxidative and photolytic systems. Therefore, special care may be sought during storage and transport of ABM or its formulations to avoid photolytic and oxidative stress exposure to the drug. Lastly, in silico toxicity of the characterized degradation products was assessed employing ProTox ІІ online web predictor freeware in which some of them were found to have the potential of hepatotoxicity, immunogenicity and mutagenicity.
Collapse
Affiliation(s)
- Nachiket Kathar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
2
|
Mishra S, Rajput N, Jadav T, Panday NK, Sahu AK, Sengupta P. Delineation of prototypical degradation mechanism, characterization of unknown degradation impurities by liquid chromatography-quadrupole-time-of-flight-tandem mass spectrometry and stability-indicating analytical method of selumetinib. Biomed Chromatogr 2024; 38:e5761. [PMID: 37920143 DOI: 10.1002/bmc.5761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Selumetinib (SELU) was recently approved by the US Food and Drug Administration (US FDA) in 2020. However, the degradation impurities of SELU have not been characterized or identified to date. The mechanism for impurity formation and the degradation behavior have not been previously studied. This study aims to elucidate the prototypical degradation mechanism of SELU. Furthermore, the degradation impurities have been identified using LC-quadrupole-time-of-flight tandem mass spectrometry and are reported in this article for the first time. In addition, a stability-indicating analytical method (SIAM) has been developed for this drug. Forced degradation studies revealed the degradation of SELU under various stress conditions, including hydrolytic stress (acid and base), oxidative stress, and photolytic stress (ultraviolet and visible). Three degradation impurities were identified. This article presents the first validated SIAM, capable of accurately quantifying SELU in the presence of its degradation impurities. Furthermore, we have proposed the degradation pathway for SELU and its degradation impurities, a first in the field. The developed SIAM can find applications in process development and quality assurance of SELU in both research laboratories and pharmaceutical industries. Moreover, the identified degradation impurities may serve as impurity standards for quality control testing in pharmaceutical industries.
Collapse
Affiliation(s)
- Sonam Mishra
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Kumar Panday
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Tapkir NT, Sahu AK, Rajput N, Jadav T, Sengupta P. Differential role of potential stressors, underlying degradation mechanism, characterization of degradants using LC-MS/MS, and establishment of a stability-indicating analytical method for duvelisib. Biomed Chromatogr 2024; 38:e5760. [PMID: 37852619 DOI: 10.1002/bmc.5760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Duvelisib (DUV) was first approved globally in 2018. An extensive literature search revealed that the differential role of a potential degradation medium in altering the shelf-life of DUV due to its exposure during storage has not been identified till date. Moreover, its degradation impurities and degradation mechanism are not known. In addition, no analytical method has been reported for the quantification of DUV in the presence of its degradation impurities. Therefore, the aim of this study was to identify the impact of different potential degradation media on the stability of DUV, establish the degradation mechanism, and identify its major degradation impurities. The aim was also to establish a stability-indicating analytical method for the quantification of DUV in the presence of its degradation impurities. This study is the first to report the structure of degradation impurities and the step-by-step degradation mechanism of DUV. This information will be useful for the scientific community and manufacturers in optimizing the formulation parameters and/or storage conditions. The validated method can be employed for analysis of stability study and routine quality control samples of newer DUV formulations in pharmaceutical industries. The identified impurities may serve as impurity standards for specifying their limits in the drug after required qualification studies.
Collapse
Affiliation(s)
- Nikita Tanaji Tapkir
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Niraj Rajput
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), an Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India
| |
Collapse
|
4
|
Geven A, Özcan S, Levent S, Can NÖ. A Different Perspective on the Characterization of a New Degradation Product of Flibanserin With HPLC-DAD-ESI-IT-TOF-MSn and Its Pharmaceutical Formulation Analysis With Inter-Laboratory Comparison. J AOAC Int 2023; 106:1145-1153. [PMID: 37348556 PMCID: PMC10560319 DOI: 10.1093/jaoacint/qsad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Flibanserin (FLB) was first synthesized as an antidepressant drug; however, due to its enhancing effects on sexual activity, it was approved for treatment of hypoactive sexual desire disorder in women in 2015. OBJECTIVE The aim of this study was to develop a new and fully validated HPLC method for analysis of FLB in pharmaceutical formulations besides its degradation products, and identification of possible formation mechanisms by using HPLC-DAD-ESI-IT-TOF-MSn. METHOD The HPLC separation was achieved in a Supelco Ascentis® Express series phenyl hexyl column (100 × 4.6 mm, ID 2.7 µm). The mobile phase was acetonitrile-ammonium acetate solution (50:50, v/v, 10 mM, pH 5.4) mixture, which was pumped at the rate of 0.5 mL/min. Chromatography, detection, and structural identification was performed by using a LCMS-IT-TOF instrument (Shimadzu, Japan). RESULTS 1-(2-(4-(3-hydroxy-5-(trifluoromethyl)phenyl)piperazine-1-yl)ethyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one is proposed as a novel degradation product, with a mass of 407.1695 and a formula of C20H21F3N4O2 with a margin of error about 0.001 ppm. The developed method is applicable with 98% accuracy within the 2.5-50.0 µg/mL range. The LOD and LOQ were about 500 ng/mL and 1.50 µg/mL, respectively. The transferability and variation between laboratories were tested by inter-laboratory comparison and evaluated with one-way analysis of variance. CONCLUSIONS A novel FLB degradation product, which was produced under oxidative forced degradation conditions was observed and identified for the first time; in addition, the formation kinetics of the degradation product besides decomposition of FLB was studied. Furthermore, an inter-laboratory comparison was carried out, and application of the proposed method on a pseudo Addyi® (Sprout Pharmaceuticals, Inc.) sample was tested using both instrument configurations. HIGHLIGHTS A novel stability-indicating assay method was developed and fully validated according to the International Council on Harmonization (Q2) R1 for the analysis of FLB in the pharmaceutical preparations. A new degradation product was identified in the oxidative forced degradation condition and characterized using HPLC-DAD-ESI-IT-TOF-MS3. Moreover, the possible mechanism and the formation kinetic of the degradation product were revealed. In addition, the developed method was transferred to another LC-PDA instrument for inter-laboratory comparison. Finally, the current method was applied to a pseudo formulation of Addy in both instruments, and ANOVA was applied for evaluation.
Collapse
Affiliation(s)
- Aysun Geven
- Anadolu University, Faculty of Pharmacy, Department of Analytical Chemistry, 26470 Eskisehir, Türkiye
| | - Saniye Özcan
- Anadolu University, Faculty of Pharmacy, Department of Analytical Chemistry, 26470 Eskisehir, Türkiye
- Anadolu University, Faculty of Pharmacy, Central Analysis Laboratory, 26470 Eskişehir, Türkiye
| | - Serkan Levent
- Anadolu University, Faculty of Pharmacy, Central Analysis Laboratory, 26470 Eskişehir, Türkiye
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskisehir, Türkiye
| | - Nafiz Öncü Can
- Anadolu University, Faculty of Pharmacy, Department of Analytical Chemistry, 26470 Eskisehir, Türkiye
- Anadolu University, Faculty of Pharmacy, Central Analysis Laboratory, 26470 Eskişehir, Türkiye
| |
Collapse
|
5
|
Bhangare D, Rajput N, Jadav T, Sahu AK, Sengupta P. Mechanism of capmatinib degradation in stress conditions including degradation product characterization using ultra-high-performance liquid chromatography-quadrupole-time of flight mass spectrometry and stability-indicating analytical method development. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9417. [PMID: 36226771 DOI: 10.1002/rcm.9417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Capmatinib (CMT) has been recently approved for the treatment of non-small cell lung cancer by the United States Food and Drug Administration (USFDA). Till date, the degradation mechanism of CMT in different stress conditions is not known. Moreover, degradation products (DPs) of the drug are yet to be identified. Characterization study on degradation products of CMT has not been reported before. Furthermore, no previously reported literature is available on the stability-indicating method of CMT. METHODS Owing to the lack of such scientific reports, we developed a sensitive, stability-indicating method for CMT which can resolve it from all its degradation products. The method was validated as per the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH Q2 [R1]) guideline. We studied and established the degradation mechanism of CMT in different stress conditions. One degradation product (DP2) was isolated and characterized using 1 H NMR. RESULTS The degradation products (DP1, DP2 and DP3) of the drug have been identified and characterized for the first time by using high-resolution mass spectrometry and 1 H NMR spectroscopy. CMT was found to become degraded under acidic, basic and photolytic stress conditions in the solution phase to yield three major DPs. The drug was found to be stable in neutral hydrolysis, oxidation and thermal stress conditions. CONCLUSIONS DP1 was formed under acidic and basic hydrolytic conditions, whereas DP2 and DP3 were formed under photolytic conditions. Characterization of all the DPs has been carried out to establish their structures and understand the molecular mechanism behind the degradation of the drug. Few studies reported quantitative analysis of CMT and its metabolites in biological fluids. However, this is the first study to identify the unknown DPs of CMT and the mechanism of its degradation. Moreover, this article reports a stability-indicating analytical method for CMT which has not yet been reported in any literature.
Collapse
Affiliation(s)
- Dhiraj Bhangare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, India
| | - Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, India
| | - Amit Kumar Sahu
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, India
| |
Collapse
|
6
|
Emphasis on the incorporation of Tropaeolin OO dye and silver nanoparticles for voltammetric estimation of flibanserin in bulk form, tablets and human plasma. Talanta 2022; 245:123420. [PMID: 35413628 DOI: 10.1016/j.talanta.2022.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/17/2022] [Accepted: 03/27/2022] [Indexed: 12/29/2022]
Abstract
A novel electrochemical sensor based on the electro-deposition of silver nanoparticles (AgNPs) on Tropaeolin OO (poly-TO) layers over pencil graphite electrode (PGE) surface was fabricated for the first time for voltammetric determination of flibanserin (FBS); a drug enhances female sexual performance. Further characterization studies using cyclic voltammetry (CV), square wave voltammetry (SWV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were conducted. The AgNPs synergistic effect on poly-TO layers facilitates the FBS electro-oxidation in phosphate buffer solution (pH 6.0) and its determination in bulk form, tablets and in human plasma. Following ICH guidelines, validation of the proposed SWV method for FBS analysis was successfully achieved using the fabricated sensor (AgNPs@poly-TO/PGE). Under the optimal instrumental and experimental conditions, the anodic oxidation peak current was directly proportional to FBS concentration in the range from 0.1 to 8.5 μmol L-1 with low detection and quantitation limits (0.0286 and 0.0867 μmol L-1, respectively). High sensitivity, selectivity as well as easiness of fabrication are the main advantages of the modified sensor.
Collapse
|
7
|
Systematic strategies for degradation kinetic study of pharmaceuticals: an issue of utmost importance concerning current stability analysis practices. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00317-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractDegradation kinetic study ascertains the shelf life of drugs under different environmental conditions. It can facilitate the prediction of specific critical factors that can affect the quality of pharmaceuticals during storage. To date, general systematic strategies for performing degradation kinetics of drugs have not been discussed in any literature. Moreover, no regulatory guideline is available on the degradation kinetic study of pharmaceuticals. Owing to this, the kinetic behavior of drugs is not being analyzed uniformly. This article provides a detailed insight into degradation kinetic approaches including criticality in selecting different variables for the study. Factors that can affect the quality of degradation kinetic study data have been critically discussed. In addition, a systematic strategy to perform degradation kinetic study with advanced degradation models has been discussed. This article will be helpful for the researcher working in the field of stability analysis and guide to select a logical path for determining the kinetic behavior of drugs. High-quality degradation kinetic data through the properly designed study will help to establish accurate storage conditions of pharmaceuticals. This article is unique and novel of its kind and would have a significant contribution to the field of stability analysis.
Collapse
|
8
|
Development and validation of a novel evaporation setup-assisted TLC method with fluorescence detection for determination of flibanserin in pharmaceutical and biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1195:123204. [PMID: 35248898 DOI: 10.1016/j.jchromb.2022.123204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
A specific and sensitive thin layer chromatographic method coupled with fluorescence detection for determination of flibanserin (FLN) that treats woman hypoactive sexual desire disorder was developed. The proposed method depends on the enhancement of FLN native fluorescence intensity via the exposure of the developed TLC plate to concentrated hydrochloric acid vapors. Herein, an evaporation setup needed for HCl vapors exposure step was designed for the first time to ensure a uniform distribution of the vapors throughout the developed bands on the plate. Chloroform: methanol (9.5: 0.5, v/v) was the optimum mobile phase that gave a compact band (Rf= 0.44 ± 0.02) using TLC aluminium plates precoated with silica gel G 60F254 as a stationary phase. After exposure of the developed TLC plate to HCl vapors, the FLN bands emission intensities were measured after excitation at 275 nm. Conferring ICH guidelines, the linearity range was 20.0 - 1500.0 ng/band with a good linear relationship (r= 0.9998). Detection and quantitation limits were 5.12 and 15.50 ng/band, respectively. Also, the method was validated for accuracy, precision, robustness, specificity and selectivity. Statistical analysis verified the suitability of the proposed method for estimation of FLN in tablets and in human plasma with acceptable recoveries (98.07-101.45%).
Collapse
|
9
|
A Comprehensive Review on Assessment and Key Control Strategies for Impurities in Drug Development with a Special Emphasis on Post-marketing Surveillance. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09607-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Sharma MK, Sahu AK, Shah RP, Sengupta P. A systematic UHPLC-Q-TOF-MS/MS based analytical approach for characterization of flibanserin metabolites and establishment of biotransformation pathway. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1185:123011. [PMID: 34735976 DOI: 10.1016/j.jchromb.2021.123011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
A systematic metabolite profiling approach has paramount importance in detecting, identifying, and characterizing drug metabolites. Till date, there is no report published on the comprehensive metabolic fate of flibanserin (FLB). In this study, the structure of entire potential metabolites of FLB has been elucidated by execution of in silico tool and high resolution mass spectrometry based metabolite profiling strategy employing data-dependent and data-independent approaches. In vitro metabolism profile was investigated after incubating FLB with liver microsomes (rat and human) and S9 fractions in presence of their respective co-factors. In vivo metabolites were identified from rat plasma, urine, feces, and brain tissue samples. An efficient extraction technique was developed that made it possible to identify the metabolites generated even in extremely low concentrations. Extraction was carried out by precipitating protein and thereafter solid-phase extraction to enrich their concentration in the sample before analysis. Fourteen new metabolites have been identified and characterized. Most of the metabolites of FLB were generated due to hydrolysis and oxidation followed by glucuronide, sulfate, and methyl conjugation. Additionally, a spiking study was employed to confirm the presence of N-oxide metabolite in human liver S9 fraction and rat urine samples. Moreover, we have established the probable biotransformation pathway of FLB and successfully analyzed the toxicity potential of the metabolites using Pro Tox-II software.
Collapse
Affiliation(s)
- Manish Kumar Sharma
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Ravi P Shah
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|