1
|
Liu J, Du G, Chen T. Synthesis of Ordered Mesoporous Silica with Nonionic Surfactant/Anionic Polyelectrolyte as Template under Near-Neutral pH Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14016-14026. [PMID: 38924705 DOI: 10.1021/acs.langmuir.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Ordered mesoporous silica is widely used in catalysis, adsorption, and biomedicine, among which SBA-15 (Santa Barbara Amorphous-15) is one of the most widely studied. However, the synthesis of SBA-15 often requires strong acid (hydrochloric acid or sulfuric acid), which will not only corrode industrial equipment but also pollute the environment with the wastewater containing strong acid and halogen (sulfur). Here, we demonstrate a green synthetic strategy for SBA-15 under weakly acidic conditions through an anionic assembly route. With the assistance of poly(acrylic acid) (PAA) and 3-aminopropyltrimethoxysilane (APMS), the pH value of the synthesis system can be increased to 4-5, which is a mild near-neutral condition. In addition, halogen-free synthesis using organic acids is also achieved. The powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 sorption characterizations show that the obtained SBA-15 has good texture properties, with a specific surface area of 430-500 m2/g and ordered 6-8 nm mesopores, which is similar to SBA-15 synthesized in traditional strong acid. This strategy provides a facile and environmentally friendly route for the large-scale production of ordered mesoporous materials.
Collapse
Affiliation(s)
- Jiawei Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & Cangzhou Bohai New Area Green Chemical Institute, Nankai University, Tianjin 300350, PR China
| | - Guo Du
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & Cangzhou Bohai New Area Green Chemical Institute, Nankai University, Tianjin 300350, PR China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & Cangzhou Bohai New Area Green Chemical Institute, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
2
|
Giannakas AE, Baikousi M, Karabagias VK, Karageorgou I, Iordanidis G, Emmanouil-Konstantinos C, Leontiou A, Karydis-Messinis A, Zafeiropoulos NE, Kehayias G, Proestos C, Salmas CE. Low-Density Polyethylene-Based Novel Active Packaging Film for Food Shelf-Life Extension via Thyme-Oil Control Release from SBA-15 Nanocarrier. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:423. [PMID: 38470754 DOI: 10.3390/nano14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The use of natural raw substances for food preservation could provide a great contribution to food waste reduction, circular economy enhancement, and green process application widening. Recent studies indicated that the use of porous materials as adsorbents for natural essential oils provided nanohybrids with excellent antioxidant and antimicrobial properties. Following this trend in this work, a thymol oil (TEO) rich SBA-15 nanohybrid was prepared and characterized physiochemically with various techniques. This TEO@SBA-15 nanohybrid, along with the pure SBA-15, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. Results indicated that TEO loading was higher than other porous materials reported recently, and the addition of both pure SBA-15 and TEO@SBA-15 to the LDPE increased the water/oxygen barrier. The film with the higher thyme-oil@SBA-15 nanohybrid content exhibited a slower release kinetic. The antioxidant activity of the final films ignited after 48 h, was in the range of 60-70%, and was almost constant for 7 days. Finally, all tests indicated a sufficient improvement by the addition of thyme-oil@SBA-15 nanohybrids in the pure LDPE matrix and the concentration of wt. 10% of such nanocarriers provided the optimum final LDPE/10TEO@SBE-15 active packaging film. This material could be a potential future product for active packaging applications.
Collapse
Affiliation(s)
- Aris E Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Maria Baikousi
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioanna Karageorgou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - George Iordanidis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | | | | | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece
| | - Constantinos E Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Barczak M, Pietras-Ożga D, Seliem MK, de Falco G, Giannakoudakis DA, Triantafyllidis K. Mesoporous Silicas Obtained by Time-Controlled Co-Condensation: A Strategy for Tuning Structure and Sorption Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2065. [PMID: 37513076 PMCID: PMC10385985 DOI: 10.3390/nano13142065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Mesoporous silicas synthesized by the co-condensation of two and three different silica monomers were synthesized by varying the time intervals between the addition of individual monomers, while the total time interval was kept constant. This resulted in different structural properties of the final silicas, particularly in their porosity and local ordering. One of the obtained samples exhibited an unusual isotherm with two hysteresis loops and its total pore volume was as high as 2.2 cm3/g. In addition, to be thoroughly characterized by a wide range of instrumental techniques, the obtained materials were also employed as the adsorbents and release platforms of a diclofenac sodium (DICL; used here as a model drug). In the case of DICL adsorption and release, differences between the samples were also revealed, which confirms the fact that time control of a monomer addition can be successfully used to fine-tune the properties of organo-silica materials.
Collapse
Affiliation(s)
- Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences of Lublin, 20-612 Lublin, Poland
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef 2722165, Beni Suef Governorate, Egypt
| | - Giacomo de Falco
- New Jersey Department of Environmental Protection, Trenton, NJ 08625, USA
| | | | | |
Collapse
|
4
|
Umar E, Ikram M, Haider J, Nabgan W, Imran M, Nazir G. A State-of-Art Review of the Metal Oxide-Based Nanomaterials Effect on Photocatalytic Degradation of Malachite Green Dyes and a Bibliometric Analysis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300001. [PMID: 37287595 PMCID: PMC10242535 DOI: 10.1002/gch2.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Indexed: 06/09/2023]
Abstract
A wide range of hard contaminants in wastewater is generated from different industries as byproducts of the organic compound. In this review, various metal oxide-based nanomaterials are employed for the photocatalytic removal of malachite green (MG) dye from wastewater. Some cost-effective and appropriate testing conditions are used for degrading these hard dyes to get higher removal efficiency. The effects of specific parameters are considered such as how the catalyst is made, how much dye is in the solution at first, how much nanocatalyst is needed to break down the dye, the initial pH of the dye solution, the type of light source used, the year of publications, and how long the dye has to be exposed to light to be removed. This study suggests that Scopus-based core collected data employ bibliometric methods to provide an objective analysis of global MG dye from 2011 to 2022 (12 years). The Scopus database collects all the information (articles, authors, keywords, and publications). For bibliometric analysis, 658 publications are retrieved corresponding to MG dye photodegradation, and the number of publications increases annually. A bibliometric study reveals a state-of-art review of metal oxide-based nanomaterials' effects on photocatalytic degradation of MG dyes (12 years).
Collapse
Affiliation(s)
- Ehtisham Umar
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Walid Nabgan
- Departament d'Enginyeria QuímicaUniversitat Rovira i VirgiliAv Països Catalans 26Tarragona43007Spain
| | - Muhammad Imran
- Department of ChemistryGovernment College University FaisalabadPakpattan RoadSahiwalPunjab57000Pakistan
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| |
Collapse
|
5
|
Zeidan H, Can M, Marti ME. Synthesis, characterization, and use of an amine-functionalized mesoporous silica SBA-15 for the removal of Congo Red from aqueous media. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Alboghbeish M, Larki A, Saghanezhad SJ. Effective removal of Pb(II) ions using piperazine-modified magnetic graphene oxide nanocomposite; optimization by response surface methodology. Sci Rep 2022; 12:9658. [PMID: 35688868 PMCID: PMC9187642 DOI: 10.1038/s41598-022-13959-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/31/2022] [Indexed: 12/07/2022] Open
Abstract
In this research, the piperazine-modified magnetic graphene oxide (Pip@MGO) nanocomposite was synthesized and utilized as a nano-adsorbent for the removal of Pb(II) ions from environmental water and wastewater samples. The physicochemical properties of Pip@MGO nanocomposite was characterized by X-ray diffraction analysis (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDAX), Thermo-gravimetric analysis (TGA), Vibrating Sample Magnetometery (VSM) and Fourier-transform infrared spectroscopy (FT-IR) analysis. In this method, the batch removal process were designed by response surface methodology (RSM) based on a central composite design (CCD) model. The results indicated that the highest efficiency of Pb(II) removal was obtained from the quadratic model under optimum conditions of prominent parameters (initial pH 6.0, adsorbent dosage 7 mg, initial concentration of lead 15 mg L−1 and contact time 27.5 min). Adsorption data showed that lead ions uptake on Pip@MGO nanocomposite followed the Langmuir isotherm model equation and pseudo-second order kinetic model. High adsorption capacity (558.2 mg g−1) and easy magnetic separation capability showed that the synthesized Pip@MGO nanocomposite has great potential for the removal of Pb(II) ions from contaminated wastewaters.
Collapse
Affiliation(s)
- Mousa Alboghbeish
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Arash Larki
- Department of Marine Chemistry, Faculty of Marine Science, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | | |
Collapse
|
7
|
Liou TH, Wang SY, Lin YT, Yang S. Sustainable utilization of rice husk waste for preparation of ordered nanostructured mesoporous silica and mesoporous carbon: Characterization and adsorption performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|