1
|
Alaqabani H, Hammad A, Abosnwber Y, Perrie Y. Novel microfluidic development of pH-responsive hybrid liposomes: In vitro and in vivo assessment for enhanced wound Healing. Int J Pharm 2024; 667:124884. [PMID: 39471888 DOI: 10.1016/j.ijpharm.2024.124884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Wound healing is a complex biological process crucial for tissue repair, especially in chronic wounds where healing is impaired. Liposomes have emerged as promising vehicles for delivering therapeutics to facilitate wound repair. Liposomes have been explored as effective carriers for therapeutic agents. However, traditional methods of liposome preparation face significant challenges, particularly in achieving consistent stability and precise control over drug encapsulation and release. This study addresses these challenges by pioneering the development of Hybrid Liposomes (HLPs) using microfluidic technology, which provides more controlled characteristics through precisely managed formulation parameters. Notably, the formation of Polydopamine (PDA) polymer within HLPs facilitates pH-responsive drug release, making them well-suited for acidic wound environments. Furthermore, surface modification with Folic Acid (FA) enhances cellular interaction with the HLPs. In vitro and in vivo studies demonstrate the efficacy of HLPs loaded with Hyaluronic Acid (HA) or Phenytoin (PHT) in promoting wound healing. Microfluidics optimizes the stability of HLPs over 90 days, underscoring their potential as a potent, antibiotic-free drug delivery system. In conclusion, this research advances the understanding of microfluidic optimization for HLPs, offering cutting-edge drug delivery systems. The transformative potential of targeted HLPs through microfluidics holds promise for revolutionizing wound healing and inspires optimism for effective therapeutic interventions.
Collapse
Affiliation(s)
- Hakam Alaqabani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK; Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Alaa Hammad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Airport St, 11733 Amman, Jordan.
| | - Yara Abosnwber
- Faculty of Health School of Biomedical Sciences, Queensland University of Technology, 2 George St, Brisbane City QLD 4000, Australia
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St, Glasgow G4 0RE, UK
| |
Collapse
|
2
|
Khadivi-Derakhshan S, Abbasi M, Akbarzadeh A, Pirouzmand M, Soleymani J. Chitosan/platinum nanocubes/Mn(TPDCA) 2-modified glassy carbon electrodes for the electrochemical quantification of amlodipine in unprocessed plasma samples. BMC Chem 2024; 18:245. [PMID: 39696374 DOI: 10.1186/s13065-024-01361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
A novel electrochemical probe is developed to detect amlodipine (AMD) in unprocessed plasma samples. The fabrication process involves the synthesis of platinum nanocubes (Pt NCs) and Mn(TPDCA)2 complexes, which are then immobilized them onto the glassy carbon electrode (GCE) surface. The developed electrochemical probe demonstrates exceptional detection performance, with a wide dynamic range, outstanding selectivity, and commendable reproducibility. The linear range and lower limit of detection of the developed method are 53 nM-3.5 µM and 53 nM, respectively. Electrochemical experiments have been conducted to study the kinetics of electrooxidation on the modified electrode, revealing that the process is diffusion-controlled. Furthermore, method validation studies are performed to assess the accuracy, precision, and selectivity of the sensor, demonstrating excellent performance in all these aspects. Consequently, it can be concluded that the sensor is highly suitable for practical applications in drug analysis.
Collapse
Affiliation(s)
- Saeedeh Khadivi-Derakhshan
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahtab Pirouzmand
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Bae G, Cho H, Hong BH. A review on synthesis, properties, and biomedical applications of graphene quantum dots (GQDs). NANOTECHNOLOGY 2024; 35:372001. [PMID: 38853586 DOI: 10.1088/1361-6528/ad55d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
A new type of 0-dimensional carbon-based materials called graphene quantum dots (GQDs) is gaining significant attention as a non-toxic and eco-friendly nanomaterial. GQDs are nanomaterials composed of sp2hybridized carbon domains and functional groups, with their lateral size less than 10 nm. The unique and exceptional physical, chemical, and optical properties arising from the combination of graphene structure and quantum confinement effect due to their nano-size make GQDs more intriguing than other nanomaterials. Particularly, the low toxicity and high solubility derived from the carbon core and abundant edge functional groups offer significant advantages for the application of GQDs in the biomedical field. In this review, we summarize various synthetic methods for preparing GQDs and important factors influencing the physical, chemical, optical, and biological properties of GQDs. Furthermore, the recent application of GQDs in the biomedical field, including biosensor, bioimaging, drug delivery, and therapeutics are discussed. Through this, we provide a brief insight on the tremendous potential of GQDs in biomedical applications and the challenges that need to be overcome in the future.
Collapse
Affiliation(s)
- Gaeun Bae
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Hyeonwoo Cho
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Shukhratovich Abdullaev S, H Althomali R, Raza Khan A, Sanaan Jabbar H, Abosoda M, Ihsan A, Aggarwal S, Mustafa YF, Hammoud Khlewee I, Jabbar AM. Integrating of analytical techniques with enzyme-mimicking nanomaterials for the fabrication of microfluidic systems for biomedical analysis. Talanta 2024; 273:125896. [PMID: 38479027 DOI: 10.1016/j.talanta.2024.125896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Bioanalysis faces challenges in achieving fast, reliable, and point-of-care (POC) determination methods for timely diagnosis and prognosis of diseases. POC devices often display lower sensitivity compared to laboratory-based methods, limiting their ability to quantify low concentrations of target analytes. To enhance sensitivity, the synthesis of new materials and improvement of the efficiency of the analytical strategies are necessary. Enzyme-mimicking materials have revolutionized the field of the fabrication of new high-throughput sensing devices. The integration of microfluidic chips with analytical techniques offers several benefits, such as easy miniaturization, need for low biological sample volume, etc., while also enhancing the sensitivity of the probe. The use enzyme-like nanomaterials in microfluidic systems can offer portable strategies for real-time and reliable detection of biological agents. Colorimetry and electrochemical methods are commonly utilized in the fabrication of nanozyme-based microfluidic systems. The review summarizes recent developments in enzyme-mimicking materials-integrated microfluidic analytical methods in biomedical analysis and discusses the current challenges, advantages, and potential future directions.
Collapse
Affiliation(s)
- Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan.
| | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University,College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Ahmad Raza Khan
- Department of Industrial and Manufacturing Engineering (Rachna College), University of Engineering and Technology, Lahore, 54700, Pakistan
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.
| | - Munther Abosoda
- Chemistry department, the Islamic University, Najaf, Iraq; Chemistry department, the Islamic University of Al Diwaniyah, Iraq; Chemistry department, the Islamic University of Babylon, Iraq
| | - Ali Ihsan
- Chemistry department, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saurabh Aggarwal
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Ibrahim Hammoud Khlewee
- Department of Prosthodontics, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Abeer Mhussan Jabbar
- college of pharmacy/ National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
5
|
Quindoza GM, Horimoto R, Nakagawa Y, Aida Y, Irawan V, Norimatsu J, Mizuno HL, Anraku Y, Ikoma T. Folic acid-mediated enhancement of the diagnostic potential of luminescent europium-doped hydroxyapatite nanocrystals for cancer biomaging. Colloids Surf B Biointerfaces 2024; 239:113975. [PMID: 38762934 DOI: 10.1016/j.colsurfb.2024.113975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Early and accurate cancer diagnosis is crucial for improving patient survival rates. Luminescent nanoparticles have emerged as a promising tool in fluorescence bioimaging for cancer diagnosis. To enhance diagnostic accuracy, ligands promoting endocytosis into cancer cells are commonly incorporated onto nanoparticle surfaces. Folic acid (FA) is one such ligand, known to specifically bind to folate receptors (FR) overexpressed in various cancer cells such as cervical and ovarian carcinoma. Therefore, surface modification of luminescent nanoparticles with FA can enhance both luminescence efficiency and diagnostic accuracy. In this study, luminescent europium-doped hydroxyapatite (EuHAp) nanocrystals were prepared via hydrothermal method and subsequently modified with (3-Aminopropyl)triethoxysilane (APTES) followed by FA to target FR-positive human cervical adenocarcinoma cell line (HeLa) cells. The sequential grafting of APTES and then FA formed a robust covalent linkage between the nanocrystals and FA. Rod-shaped FA-modified EuHAp nanocrystals, approximately 100 nm in size, exhibited emission peaks at 589, 615, and 650 nm upon excitation at 397 nm. Despite a reduction in photoluminescence intensity following FA modification, fluorescence microscopy revealed a remarkable 120-fold increase in intensity compared to unmodified EuHAp, attributed to the enhanced uptake of FA-modified EuHAp. Additionally, confocal microscope observations confirmed the specificity and the internalization of FA-modified EuHAp nanocrystals in HeLa cells. In conclusion, the modification of EuHAp nanocrystals with FA presents a promising strategy to enhance the diagnostic potential of cancer bioimaging probes.
Collapse
Affiliation(s)
- Gerardo Martin Quindoza
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Rui Horimoto
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuhiro Nakagawa
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuta Aida
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Vincent Irawan
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jumpei Norimatsu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hayato Laurence Mizuno
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasutaka Anraku
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiyuki Ikoma
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
6
|
Jing Y, Huang L, Dong Z, Gong Z, Yu B, Lin D, Qu J. Super-resolution imaging of folate receptor alpha on cell membranes using peptide-based probes. Talanta 2024; 268:125286. [PMID: 37832456 DOI: 10.1016/j.talanta.2023.125286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Folate receptor alpha (FRα) is a vital membrane protein which have great association with cancers and involved in various biological processes including folate transport and cell signaling. However, the distribution and organization pattern of FRα on cell membranes remains unclear. Previous studies relied on antibodies to recognize the proteins. However, multivalent crosslinking and large size of antibodies confuse the direct observation to some extent. Fortunately, the emergence of peptide, which are small-sized and monovalent, has supplied us an unprecedented choice. Here, we applied fluorophore-conjugated peptide probe to recognize the FRα and study the distribution pattern of FRα on cell membrane using dSTORM super-resolution imaging technique. FRα were found to organized as clusters on cell surface with different sizes. And they have a higher expression level and formed larger clusters on various cancer cells than normal cells, which hinted that its specific distribution could be utilized for cancer diagnosis. Furthermore, we revealed that the lipid raft and cortical actin as restrictive factors for the FRα clustering, suggesting a potential assembly mechanism insight into FRα clustering on cell membrane. Collectively, our work clarified the morphology distribution and clustered organization of FRα with peptide probes at the nanometer scale, which paves the way for further revealing the relationship between the spatial organization and functions of membranal proteins.
Collapse
Affiliation(s)
- Yingying Jing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Lilin Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zufu Dong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhenquan Gong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Bin Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
7
|
Salek-Maghsoodi M, Golsanamlu Z, Sadeghi-Mohammadi S, Gazizadeh M, Soleymani J, Safaralizadeh R. Simple fluorescence chemosensor for the detection of calcium ions in water samples and its application in bio-imaging of cancer cells. RSC Adv 2022; 12:31535-31545. [PMID: 36380939 PMCID: PMC9631868 DOI: 10.1039/d2ra04815a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/29/2022] [Indexed: 12/27/2023] Open
Abstract
This article describes the design, synthesis and characterization of a sensor suitable for practical measurement of ionized calcium in water samples and cancer cells. Calcium is an important ion in living organs and works as a messenger in several cellular functions. A lack of Ca ions interrupts the immune system and can lead to several diseases. A novel magnetic-polydopamine nanoparticle (PDNP)/rhodamine B (RhB)/folic acid (FA) nanoparticle was developed for the determination of calcium ions in MCF 7 cell lysates and water samples. Furthermore, the produced nanoparticle was employed for bioimaging of folate receptor (FR)-overexpressed cancer cells. This nanoprobe displayed a bright photoluminescence emission at 576 nm under an excitation wavelength of 420 nm. In the presence of calcium ions, the fluorescence emission of the MNPs-PDNPs/RhB/FA probe was proportionally decreased from 20 ng mL-1 to 100 ng mL-1 and 0.5 μg mL-1 to 20 μg mL-1 with a lower limit of quantification (LLOQ) of about 20 ng mL-1. The developed sensor showed a low-interference manner in the presence of possible coexistence interfering ions. In addition, this nanomaterial showed excellent biocompatibility with favorable differentiation ability to attach to the FR-positive cancer cells. The MNPs-PDNPs/RhB/FA nanoparticle has been utilized for bioimaging of the MCF 7 cell with favorable differentiation ability.
Collapse
Affiliation(s)
- Maral Salek-Maghsoodi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Zahra Golsanamlu
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Gazizadeh
- Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, Tabriz University Tabriz Iran
| |
Collapse
|
8
|
Trends in advanced materials for the fabrication of insulin electrochemical immunosensors. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Jafarzadeh S, Bargahi N, Shamloo HB, Soleymani J. Concanavalin A-conjugated gold nanoparticle/silica quantum dot (AuNPs/SiQDs-Con A)-based platform as a fluorescent nanoprobe for the bioimaging of glycan-positive cancer cells. RSC Adv 2022; 12:8492-8501. [PMID: 35424830 PMCID: PMC8984933 DOI: 10.1039/d2ra00035k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
The glycan receptor is a glycosylphosphatidylinositol glycoprotein that is overexpressed on the surface of various cancer cells and has been utilized for wide applications. In the present work, the surface of citrate-capped gold nanoparticles (cit-AuNPs) was modified with mercaptopropionic acid (MPA) molecules to provide carboxylic groups for secondary functionalization with amine anchored-silica quantum dots (Si-NH2 QDs) to produce cit-AuNPs-MPA/Si-NH2 QDs fluorescent nanoparticles. Concanavalin A (Con A) molecules were attached through thiol-AuNP bonds to produce the final cit-AuNPs/MPA/Si-NH2 QDs/Con A smart nanoparticles. The synthesized novel cit-AuNPs/MPA/Si-NH2 QDs/Con A nanoparticles were utilized for the bioimaging of glycan-overexpressed breast cancer cells. Fluorescence microscopy and flow cytometry results revealed that the cit-AuNPs/MPA/Si-NH2 QDs/Con A NPs can be efficiently taken up by cancer cells, with differentiating ability between overexpressed cancer cells and low-expressed normal cells. The cellular viability of the cit-AuNPs/MPA/Si-NH2 QDs/Con A NPs was tested by the MTT test, proving their biocompatible nature at the 200 μg mL-1 level. In conclusion, the fabricated cit-AuNPs/MPA/Si-NH2 QDs/Con A NPs could be utilized for the bioimaging of MCF-7 cancer cells even in the clinical setting after proper in vivo validation.
Collapse
Affiliation(s)
- Somayeh Jafarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Nasrin Bargahi
- Biotechnology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Hassan Bagherpour Shamloo
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| |
Collapse
|
11
|
Golsanamlou Z, Mahmoudpour M, Soleymani J, Jouyban A. Applications of Advanced Materials for Non-Enzymatic Glucose Monitoring: From Invasive to the Wearable Device. Crit Rev Anal Chem 2021; 53:1116-1131. [PMID: 34894901 DOI: 10.1080/10408347.2021.2008227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Diabetes mellitus (DM) is a global health problem leading to many complications and disabilities in life adjusting activities and even dead. Monitoring glucose levels is a key factor in diagnosis and management of DM. Conventional glucose sensors consisted of immobilized enzymes, are so susceptible to environmental conditions. In this way, nonenzymatic biosensors have attracted extensive attentions in many clinical diagnostics applications. To date, the finger pricking test is a common enzyme-based glucometer that is an invasive and inconvenient and may lead to infections in the injection sites. So, working on the possibility of cutaneous or subcutaneous insertion of devices as a noninvasive or minimally-invasive systems for continuous glucose controlling approaches through human biofluids (blood, perspiration, tears, saliva, etc.) have stimulated growing interest. This review summarizes recent nonenzymatic and noninvasive biofluids glucose monitoring systems which are highly resilience and stretchable to continuously adapt to body movements during common physical activity. Sensors are based on their constituent materials including carbon-based, metal nanoparticles, polymer, and hydrogel systems are classified for electrochemical, and optical glucose detection. Finally, we address the drawbacks and challenges of enzyme-free sensors which are aroused sustaining research passion to be used in point-of-care medical diagnostics applications.
Collapse
Affiliation(s)
- Zahra Golsanamlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Mahmoudpour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, Nicosia, Turkey
| |
Collapse
|