1
|
Tajik S, Beitollahi H, Garkani Nejad F, Zaimbashi R. CoWO 4/Reduced Graphene Oxide Nanocomposite-Modified Screen-Printed Carbon Electrode for Enhanced Voltammetric Determination of 2,4-Dichlorophenol in Water Samples. MICROMACHINES 2024; 15:1360. [PMID: 39597172 PMCID: PMC11596183 DOI: 10.3390/mi15111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Water pollution with phenolic compounds is a serious environmental issue that can pose a major threat to the water sources. This pollution can come from various agricultural and industrial activities. Phenolic compounds can have detrimental effects on both human health and the environment. Therefore, it is essential to develop and improve analytical methods for determination of these compounds in the water samples. In this work, the aim was to design and develop an electrochemical sensing platform for the determination of 2,4-dichlorophenol (2,4-DCP) in water samples. In this regard, a nanocomposite consisting of CoWO4 nanoparticles (NPs) anchored on reduced graphene oxide nanosheets (rGO NSs) was prepared through a facile hydrothermal method. The formation of the CoWO4/rGO nanocomposite was confirmed via different characterization techniques. Then, the prepared CoWO4/rGO nanocomposite was used to modify the surface of a screen-printed carbon electrode (SPCE) for enhanced determination of 2,4-DCP. The good electrochemical response of the modified SPCE towards the oxidation of 2,4-DCP was observed by using cyclic voltammetry (CV) due to the good properties of CoWO4 NPs and rGO NSs along with their synergistic effects. Under optimized conditions, the CoWO4/rGO/SPCE sensor demonstrated a broad linear detection range (0.001 to 100.0 µM) and low limit of detection (LOD) (0.0007 µM) for 2,4-DCP determination. Also, the sensitivity of CoWO4/rGO/SPCE for detecting 2,4-DCP was 0.3315 µA/µM. In addition, the good recoveries for determining spiked 2,4-DCP in the water samples at the surface of CoWO4/rGO/SPCE showed its potential for determination of this compound in real samples.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| | - Reza Zaimbashi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran; (F.G.N.); (R.Z.)
| |
Collapse
|
2
|
Wang J, Liu C, Di Z, Huang J, Wei H, Guo M, Yu X, Li N, Zhao J, Cheng B. Polyimide-multiwalled carbon nanotubes composite as electrochemical sensing platform for the simultaneous detection of nitrophenol isomers. CHEMOSPHERE 2024; 367:143654. [PMID: 39486628 DOI: 10.1016/j.chemosphere.2024.143654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Developing novel electrode materials plays a crucial role in enhancing the electrochemical sensing performance of chemically modified electrodes. This research presents a composite electrode material based on polyimide incorporated with multiwalled carbon nanotubes (PI-MWCNT) for the simultaneous detection of three nitrophenol isomers (NPs). First, the composite was prepared and characterized using microscopies, spectroscopic techniques, and electrochemical experiments. The results indicated that the PI-MWCNT exhibited porosity and roughness, which facilitated the enhancement of its sensing performance. Afterward, the detection capabilities of PI-MWCNT towards NPs were evaluated through voltammetry experiments under optimal conditions. The differential pulse voltammetry (DPV) curves revealed three distinct anodic peaks in the NPs solution, with linear ranges of 1-300 μM for 2-NP, 0.25-250 μM for 3-NP, and 0.25-400 μM for 4-NP. The limits of detection (LOD) were 0.50 μM for both 2-NP and 3-NP, and 0.64 μM for 4-NP. Furthermore, the proposed electrode material was successfully applied to real samples, achieving recovery rates ranging from 92.9% to 106%. This study could contribute to the development of more efficient and sensitive electrochemical sensors.
Collapse
Affiliation(s)
- Jianzheng Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Chunying Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Ziao Di
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Jiayu Huang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Hongjun Wei
- Tianjin Shengwei Biological Technology Co., Ltd., Tianjin, 300457, PR China
| | - Minjie Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Xiaoliang Yu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Nan Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Jin Zhao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China; Tianjin Key Laboratory of Multiplexed Identification for Port Hazardous Chemicals, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
3
|
Zhang B, Li X, Wang Z, Ren H, Wang J, Chen Q, Cai Y, Quan K, Liu M, Pan M, Fang G. Dual biomass-derived porous carbon heterogeneous functionalized mesoporous CuCo 2O 4 nanocomposite combined with molecularly imprinted polymers as an electrochemical sensing platform for hypersensitive and selective determination of dimetridazole contaminants. Talanta 2024; 277:126395. [PMID: 38865958 DOI: 10.1016/j.talanta.2024.126395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
In this study, an original molecularly imprinted electrochemical sensor (MIECS) is prepared using layer-by-layer modification of sensitization nanomaterials (CuCo2O4/BPC-E) coupled with molecularly imprinted polymers (MIPs) for the ultrasensitive and rapid determination of dimetridazole (DMZ) contaminants. The biomass waste of eggshell (ES) powders subtly introduced in situ in the carbonization process of psyllium husk (PSH) substantially promotes the physicochemical properties of the resulting biomass-derived porous carbon (BPC-E). The large specific surface area and abundant pores provide a favourable surface for loading mesoporous CuCo2O4 with a spinel structure. The assembly of CuCo2O4/BPC-E on the gold electrode (GE) surface enhances the electrochemical sensing signal. The MIPs constructed using DMZ and o-phenylenediamine (oPD) as templates and functional monomers boost the targeted recognition performance of the analyte. The combined DMZ targets then undergo an electrochemical reduction reaction in situ with the transfer of four electrons and four protons. Under optimum conditions, the current response of differential pulse voltammetry (DPV) exhibits two linear ranges for DMZ detection, 0.01-10 μM and 10-200 μM. The limit of detection (LOD) is 1.8 nM (S/N = 3) with a sensitivity of 5.724 μA μM-1 cm-2. The obtained MIECS exhibits excellent selectivity, reproducibility, repeatability and stability. This electrochemical sensing system is applied to the detection of real samples (tap water, coarse fodder and swine urine), yielding satisfactory recoveries (90.6%-98.1 %), which are consistent with those obtained via HPLC. This finding verifies that the utility of MIECS for monitoring pharmaceutical and environmental contaminants and ensuring food safety.
Collapse
Affiliation(s)
- Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiaoran Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zifu Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Huimin Ren
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Qijie Chen
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Ke Quan
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
5
|
Meskher H, Achi F. Electrochemical Sensing Systems for the Analysis of Catechol and Hydroquinone in the Aquatic Environments: A Critical Review. Crit Rev Anal Chem 2024; 54:1354-1367. [PMID: 36007064 DOI: 10.1080/10408347.2022.2114784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Because of their unique physical, chemical, and biological characteristics, conductive nanomaterials have a lot of potential for applications in materials science, energy storage, environmental science, biomedicine, sensors/biosensors, and other fields. Recent breakthroughs in the manufacture of carbon materials, conductive polymers, metals, and metal oxide nanoparticles based electrochemical sensors and biosensors for applications in environmental monitoring by detection of catechol (CC) and hydroquinone (HQ) are presented in this review. To achieve this goal, we first introduced recent works that discuss the effects of phenolic compounds and the need for accurate, inexpensive, and quick monitoring, and then we focused on the use of the most important applications of nanomaterials, such as carbon-based materials, metals, and metal oxides nanoparticles, and conductive polymers, to develop sensors to monitor catechol and hydroquinone. Finally, we identified challenges and limits in the field of sensors and biosensors, as well as possibilities and recommendations for developing the field for better future applications. Meanwhile, electrochemical sensors and biosensors for catechol and hydroquinone measurement and monitoring were highlighted and discussed particularly. This review, we feel, will aid in the promotion of nanomaterials for the development of innovative electrical sensors and nanodevices for environmental monitoring.
Collapse
Affiliation(s)
- Hicham Meskher
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| | - Fethi Achi
- Laboratory of Valorization and Promotion of Saharian Ressources (VPSR), Kasdi-Merbah University, Ouargla, Algeria
| |
Collapse
|
6
|
Jakkrawhad C, Makkliang F, Nurerk P, Siaj M, Poorahong S. Iron-based metal-organic framework/graphene oxide composite electrodes for efficient flow-injection amperometric detection of dexamethasone. RSC Adv 2024; 14:23921-23929. [PMID: 39086520 PMCID: PMC11289712 DOI: 10.1039/d4ra03815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
A highly stable flow-injection amperometric sensor for dexamethasone (DEX) was developed using a pencil graphite electrode (PGE) modified with Fe-based metal organic frameworks, MIL-100(Fe) and graphene oxide composite materials (MIL-100(Fe)/GO). Scanning electron microscopy and energy-dispersive X-ray spectroscopy, transmission electron microscopy, powder X-ray diffraction, and Fourier-transform infrared spectroscopy were used to characterize the MIL-100(Fe) composites. The MIL-100(Fe)/GO-modified PGE (denoted MIL-100(Fe)/GO/PGE) was further electrochemically characterized using cyclic voltammetry. As an electrode material, MIL-100(Fe) is a sensing element that undergoes oxidation from Fe(ii)-MOF to Fe(iii)-MOF, and GO possesses high conductivity and a large surface area, which exhibits high absorbability. In the presence of DEX, Fe(iii) is reduced, which accelerates electron transfer at the electrode interface. Therefore, DEX can be quantitatively detected by analyzing the anodic current of MIL-100(Fe). When coupled with amperometric flow injection analysis, excellent performance can be obtained even when a low detection potential is applied (+0.10 V vs. Ag/AgCl). The concentration was linear in the range 0.10-5.0 μM and 0.010-5.0 mM with LOD of 0.030 μM based on 3(sd/slope). The modified electrode also exhibited a remarkably stable response under optimized conditions, and up to 55 injections can be used per electrode. The sensor exhibits high repeatability, reproducibility, and anti-interference properties when used for DEX detection. The effective determination of dexamethasone in real pharmaceutical and cosmetic samples demonstrated the feasibility of the electrochemical sensor, and the results were in good agreement with those obtained from the HPLC-DAD analysis. Acceptable percentage recoveries from the spiked pharmaceutical and cosmetic samples were obtained, ranging from 93-111% for this new method compared with 84-107% for the HPLC-DAD standard method.
Collapse
Affiliation(s)
- Chanida Jakkrawhad
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Department of Chemistry, School of Science, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Fonthip Makkliang
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- School of Languages and General Education, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Piyaluk Nurerk
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Department of Chemistry, School of Science, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Mohamed Siaj
- Department of Chemistry, Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Sujittra Poorahong
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Department of Chemistry, School of Science, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| |
Collapse
|
7
|
Habibi B, Pashazadeh S, Pashazadeh A, Saghatforoush LA. An amplified electrochemical sensor employing one-step synthesized nickel-copper-zinc ferrite/carboxymethyl cellulose/graphene oxide nanosheets composite for sensitive analysis of omeprazole. RSC Adv 2023; 13:29931-29943. [PMID: 37860173 PMCID: PMC10582824 DOI: 10.1039/d3ra04766k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
In this work, a signal amplification strategy was designed by the fabrication of a highly sensitive and selective electrochemical sensor based on nickel-copper-zinc ferrite (Ni0.4Cu0.2Zn0.4Fe2O4)/carboxymethyl cellulose (CMC)/graphene oxide nanosheets (GONs) composite modified glassy carbon electrode (GCE) for determination of omeprazole (OMP). The one-step synthesized Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction techniques. Then, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE was applied to study the electrochemical behavior of the OMP. Electrochemical data show that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE exhibits superior electrocatalytic performance on the oxidation of OMP compared with bare GCE, GONs/GCE, CMC/GONs/GCE and MFe2O4/GCE (M = Cu, Ni and Zn including single, double and triple of metals) which can be attributed to the synergistic effects of the nanocomposite components, outstanding electrical properties of Ni0.4Cu0.2Zn0.4Fe2O4 and high conductivity of CMC/GONs as well as the further electron transport action of the nanocomposite. Under optimal conditions, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE offers a high performance toward the electrodetermination of OMP with the wide linear-range responses (0.24-5 and 5-75 μM), lower detection limit (0.22 ± 0.05 μM), high sensitivity (1.1543 μA μM-1 cm-2), long-term signal stability and reproducibility (RSD = 2.54%). It should be noted that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE sensor could also be used for determination of OMP in drug and biological samples, indicating its feasibility for real analysis.
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | | |
Collapse
|
8
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
9
|
Vidal JC, Midón J, Vidal AB, Ciomaga D, Laborda F. Detection, quantification, and characterization of polystyrene microplastics and adsorbed bisphenol A contaminant using electroanalytical techniques. Mikrochim Acta 2023; 190:203. [PMID: 37156867 PMCID: PMC10167125 DOI: 10.1007/s00604-023-05780-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
The potential applications of electroanalytical techniques for the quantification and size characterization of nonelectroactive polystyrene microplastics is reported, in addition to characterizing the kinetics of adsorption of bisphenol A on these polystyrene microparticles. The individual adsorption events of very diluted polystyrene microparticles dispersions on glassy-carbon microelectrodes produce the blocking of the charge transfer of a mediator (ferrocene-methanol) thus decreasing the current of the recorded chronoamperogram in a stepwise manner. The magnitude of the current steps are in the order of pA values and can be related to the diameter of the plastic microparticles in the size range 0.1 to 10 µm. The frequency of the current steps in the domain time used (120 s) allows to quantify the number concentration of these microparticles in the range 0.005 to 0.500 pM. Electrochemical impedance spectroscopy confirms the adsorption of the polystyrene microplastics on carbon microelectrodes (and to a lesser extent on platinum microelectrodes) under the same experimental conditions as above. On the other hand, the adsorbed microplastics become concentrators of other pollutants found in the environment. The sensitive differential-pulse voltammetry determination of bisphenol A (linear range 0.80-15.00 µM; detection limit 0.24 µM) was used together with a simple separation procedure for studying the adsorption of bisphenol A on polystyrene microparticles. The adsorption capacity (mg of bisphenol A retained per g of the polystyrene microplastics) decreased from approximately 5.7 to 0.8 mg g-1 with increasing dosages of polystyrene microparticles from 0.2 to 1.6 g l-1. The adsorption isotherms were modeled resulting in a monolayer of bisphenol A adsorbed on the microplastics (i.e., best fitted to a Langmuir model).
Collapse
Affiliation(s)
- Juan C Vidal
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain.
| | - Javier Midón
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Ana B Vidal
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Dragos Ciomaga
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Francisco Laborda
- Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
10
|
Pazuki D, Ghosh R, Howlader MMR. Nanomaterials-Based Electrochemical Δ 9-THC and CBD Sensors for Chronic Pain. BIOSENSORS 2023; 13:384. [PMID: 36979596 PMCID: PMC10046734 DOI: 10.3390/bios13030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Chronic pain is now included in the designation of chronic diseases, such as cancer, diabetes, and cardiovascular disease, which can impair quality of life and are major causes of death and disability worldwide. Pain can be treated using cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) due to their wide range of therapeutic benefits, particularly as sedatives, analgesics, neuroprotective agents, or anti-cancer medicines. While little is known about the pharmacokinetics of these compounds, there is increasing interest in the scientific understanding of the benefits and clinical applications of cannabinoids. In this review, we study the use of nanomaterial-based electrochemical sensing for detecting Δ9-THC and CBD. We investigate how nanomaterials can be functionalized to obtain highly sensitive and selective electrochemical sensors for detecting Δ9-THC and CBD. Additionally, we discuss the impacts of sensor pretreatment at fixed potentials and physiochemical parameters of the sensing medium, such as pH, on the electrochemical performance of Δ9-THC and CBD sensors. We believe this review will serve as a guideline for developing Δ9-THC and CBD electrochemical sensors for point-of-care applications.
Collapse
Affiliation(s)
- Dadbeh Pazuki
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4K1, Canada;
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4LS, Canada;
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
11
|
Wu S, Wu S, Zhang X, Feng T, Wu L. Chitosan-Based Hydrogels for Bioelectronic Sensing: Recent Advances and Applications in Biomedicine and Food Safety. BIOSENSORS 2023; 13:93. [PMID: 36671928 PMCID: PMC9856120 DOI: 10.3390/bios13010093] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Due to the lack of efficient bioelectronic interfaces, the communication between biology and electronics has become a great challenge, especially in constructing bioelectronic sensing. As natural polysaccharide biomaterials, chitosan-based hydrogels exhibit the advantages of flexibility, biocompatibility, mechanical tunability, and stimuli sensitivity, and could serve as an excellent interface for bioelectronic sensors. Based on the fabrication approaches, interaction mechanisms, and bioelectronic communication modalities, this review divided chitosan-based hydrogels into four types, including electrode-based hydrogels, conductive materials conjugated hydrogels, ionically conductive hydrogels, and redox-based hydrogels. To introduce the enhanced performance of bioelectronic sensors, as a complementary alternative, the incorporation of nanoparticles and redox species in chitosan-based hydrogels was discussed. In addition, the multifunctional properties of chitosan-based composite hydrogels enable their applications in biomedicine (e.g., smart skin patches, wood healing, disease diagnosis) and food safety (e.g., electrochemical sensing, smart sensing, artificial bioelectronic tongue, fluorescence sensors, surface-enhanced Raman scattering). We believe that this review will shed light on the future development of chitosan-based biosensing hydrogels for micro-implantable devices and human-machine interactions, as well as potential applications in medicine, food, agriculture, and other fields.
Collapse
Affiliation(s)
- Si Wu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shijing Wu
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xinyue Zhang
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tao Feng
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Song H, Huo M, Zhou M, Chang H, Li J, Zhang Q, Fang Y, Wang H, Zhang D. Carbon Nanomaterials-Based Electrochemical Sensors for Heavy Metal Detection. Crit Rev Anal Chem 2022; 54:1987-2006. [PMID: 36463557 DOI: 10.1080/10408347.2022.2151832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Heavy metals are commonly found in a wide range of environmental settings metals, but the potential toxicity associated with heavy metal exposure represents a major threat to global public health. It is thus vital that approaches to efficiently, reliably, and effectively detecting heavy metals in a range of sample types be established. Carbon nanomaterials offer many advantageous properties that make them well-suited to the design of sensitive, selective, easy-to-operate electrochemical biosensors ideal for detecting heavy metal ions. The present review offers an overview of recent progress in the development of carbon nanomaterial-based electrochemical sensors used to detect heavy metals. In addition to providing a detailed discussion of certain carbon nanomaterials such as carbon nanotubes, graphene, carbon fibers, carbon quantum dots, carbon nanospheres, mesoporous carbon, and Graphdiyne, we survey the challenges and future directions for this field. Overall, the studies discussed herein suggest that the further development of carbon nanomaterial-modified electrochemical sensors will support the integration of increasingly advanced sensor platforms to aid in detecting heavy metals in foods, environmental samples, and other settings, thereby benefitting human health and society as a whole.
Collapse
Affiliation(s)
- Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
13
|
Facure MH, Andre RS, Cardoso RM, Mercante LA, Correa DS. Electrochemical and optical dual-mode detection of phenolic compounds using MnO2/GQD nanozyme. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Xu CY, Ning KP, Wang Z, Yao Y, Xu Q, Hu XY. Flexible Electrochemical Platform Coupled with In Situ Prepared Synthetic Receptors for Sensitive Detection of Bisphenol A. BIOSENSORS 2022; 12:1076. [PMID: 36551043 PMCID: PMC9775942 DOI: 10.3390/bios12121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A flexible electrochemical sensor based on the carbon felt (CF) functionalized with Bisphenol A (BPA) synthetic receptors was developed. The artificial Bisphenol A receptors were grafted on the CF by a simple thermal polymerization molecular imprinting process. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and electrochemical characterizations were used to analyze the receptors. Characterization results demonstrated that the Bisphenol A synthetic receptors successfully formed on the CFs surface. Because the synthetic receptor and the porous CFs were successfully combined, the sensor displayed a better current response once Bisphenol A was identified. The sensor's linear range was determined to be from 0.5 to 8.0 nM and 10.0 to 300.0 nM, with a detection limit of 0.36 nM. Even after being bent and stretched repeatedly, the electrode's performance was unaffected, demonstrating the robustness, adaptability and viability of installing the sensor on flat or curved surfaces for on-site detection. The designed electrochemical sensor has been used successfully to identify Bisphenol A in milk samples with satisfactory results. This work provided a promising platform for the design of implantable, portable and miniaturized sensors.
Collapse
|
15
|
Gallay P, López Mujica M, Bollo S, Rivas G. Genosensing Applications of Glassy Carbon Electrodes Modified with Multi-Walled Carbon Nanotubes Non-Covalently Functionalized with Polyarginine. MICROMACHINES 2022; 13:1978. [PMID: 36422406 PMCID: PMC9696550 DOI: 10.3390/mi13111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
We report the advantages of glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with polyarginine (PolyArg) for the adsorption and electrooxidation of different DNAs and the analytical applications of the resulting platform. The presence of the carbon nanostructures, and mainly the charge of the PolyArg that supports them, facilitates the adsorption of calf-thymus and salmon sperm double-stranded DNAs and produces an important decrease in the overvoltages for the oxidation of guanine and adenine residues and a significant enhancement in the associated currents. As a proof-of-concept of possible GCE/MWCNTs-PolyArg biosensing applications, we develop an impedimetric genosensor for the quantification of microRNA-21 at femtomolar levels, using GCE/MWCNTs-PolyArg as a platform for immobilizing the DNA probe, with a detection limit of 3fM, a sensitivity of 1.544 × 103 Ω M-1, and a successful application in enriched biological fluids.
Collapse
Affiliation(s)
- Pablo Gallay
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Michael López Mujica
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Soledad Bollo
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380000, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380000, Chile
| | - Gustavo Rivas
- INFIQC, Departamento de FIsicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| |
Collapse
|
16
|
Razem M, Ding Y, Morozova K, Mazzetto F, Scampicchio M. Analysis of Phenolic Compounds in Food by Coulometric Array Detector: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7498. [PMID: 36236596 PMCID: PMC9572987 DOI: 10.3390/s22197498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Phenolic compounds are an important group of organic molecules with high radical scavenging, antimicrobial, anti-inflammatory, and antioxidant properties. The emerging interest in phenolic compounds in food products has led to the development of various analytical techniques for their detection and characterization. Among them, the coulometric array detector is a sensitive, selective, and precise method for the analysis of polyphenols. This review discusses the principle of this method and recent advances in its development, as well as trends in its application for the analysis of phenolic compounds in food products, such as fruits, cereals, beverages, herbs, and spices.
Collapse
|
17
|
Topkaya C, Aslan S, Hökelek T, Göktürk T, Kıncal S, Altuntaş DB, Güp R. Syntheses, crystal structures, hirshfeld surface analyses and electrochemical etoposide/camptotechin sensor applications of acetaldehyde oxime derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Cetinkaya A, Kaya SI, Şenel P, Cini N, Atici EB, Ozkan SA, Yurtsever M, Gölcü A. Detection of Axitinib Using Multiwalled Carbon Nanotube-Fe 2O 3/Chitosan Nanocomposite-Based Electrochemical Sensor and Modeling with Density Functional Theory. ACS OMEGA 2022; 7:34495-34505. [PMID: 36188240 PMCID: PMC9520732 DOI: 10.1021/acsomega.2c04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
In this study, axitinib (AXI), a potent and selective inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinase and used as a second-generation targeted drug, was investigated electrochemically under optimized conditions using multiwalled carbon nanotubes/iron(III) oxide nanoparticle-chitosan nanocomposite (MWCNT/Fe2O3@chitosan NC) modified on the glassy carbon electrode (GCE) surface. Characterization of the modified electrode was performed using scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The adsorptive stripping differential pulse voltammetric (AdSDPV) technique was used for the sensitive, rapid, and precise detection of AXI. The current peak obtained with the MWCNT/Fe2O3@chitosan NC modified electrode was 23 times higher compared to the bare electrode. The developed modified electrode showed excellent electrocatalytic activity in AXI oxidation. Under optimized conditions, the effect of supporting electrolyte and pH was investigated, and 0.1 M H2SO4 was chosen as the electrolyte with the highest peak current for the target analyte. In the concentration range of MWCNT/Fe2O3@chitosan NC/GCE, 6 × 10-9 and 1 × 10-6 M, the limit of detection (LOD) and limit of quantification (LOQ) values were calculated to be 0.904 and 0.0301 pM, respectively. Tablet and serum samples were used for the applicability of the developed sensor, relative standard deviation (RSD) values for all samples were below 2%, and the recovery results were 99.23 and 101.84%, respectively. The MWCNT/Fe2O3@chitosan NC/GCE designed to determine AXI demonstrated the applicability, selectivity, precision, and accuracy of the sensor. The mechanism of electron transfer from the modified GCE surface to the analyte solution is studied via modeling the modified GCE surface by the density functional theory (DFT) method at B3LYP/6-311+g(d,p) and M062X/6-31g(d,p) levels. We observed that the iron oxide nanoparticles play an important role in channeling electron flow from the analyte solution to the MWCNT-coated GCE electrode surface. Adsorption of the nanocomposite material onto the GCE surface occurs via strong electrostatic interactions, including ionic and hydrogen bond formations. During the adsorption-controlled oxidation process of the axitinib, the electrons are transferred via the highest occupied molecular orbital (HOMO) localized on the iron oxide moiety to the lowest unoccupied molecular orbital (LUMO) of the MWCNT/GCE surface.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkiye
| | - S. Irem Kaya
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkiye
- Department
of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, 06010 Ankara, Turkiye
| | - Pelin Şenel
- Chemistry
Department, Science and Letters Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkiye
| | - Nejla Cini
- Chemistry
Department, Science and Letters Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkiye
| | - Esen B. Atici
- Research
& Development Center, DEVA Holding A.S., 59520 Tekirdağ, Turkiye
| | - Sibel A. Ozkan
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkiye
| | - Mine Yurtsever
- Chemistry
Department, Science and Letters Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkiye
| | - Ayşegül Gölcü
- Chemistry
Department, Science and Letters Faculty, Istanbul Technical University, Maslak, 34469 Istanbul, Turkiye
| |
Collapse
|
19
|
He X, Sun N, Jia H, Hou M, Tan Z, Lu X. Antifouling Electrochemical Biosensor Based on Conductive Hydrogel of DNA Scaffold for Ultrasensitive Detection of ATP. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40624-40632. [PMID: 36049088 DOI: 10.1021/acsami.2c10081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As an energy supplier, ATP plays an important role in various life activities, and there is an urgent need to develop an effective means of detecting ATP. However, the traditional sensors face serious nonspecific adsorption. In this work, an antifouling electrochemical biosensor based on the interpenetrating network of Y-DNA scaffold and polyaniline hydrogel was designed for ATP detection. The polyaniline hydrogel was conducive to the transport of electrons and ions, the structure of Y-DNA cross-linked by ATP aptamers in the polyaniline hydrogel achieved the effect of signal amplification. Super hydrophilic cellulose nanocrystals (CNCs) and zwitterion polypeptide sequence (Pep) were doped to play a synergistic antifouling effect. The hydrogel sensor we have built has a wide linear range of 0.1 pM-1 μM for ATP detection and a low detection limit of 0.025 pM (S/N = 3). For ATP detection in actual serum samples, the recovery of this sensor was 99.5%-106%, and the relative standard deviation was 0.4%-2.88%. It is proven that the sensor has good ATP detection performance, and it will provide a certain reference value for the detection of other biological small molecules.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Nan Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Hui Jia
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Miaomiao Hou
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zheping Tan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
20
|
Neven L, Barich H, Rutten R, De Wael K. Novel (Photo)electrochemical Analysis of Aqueous Industrial Samples Containing Phenols. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Sivaranjanee R, Senthil Kumar P, Saravanan R, Govarthanan M. Electrochemical sensing system for the analysis of emerging contaminants in aquatic environment: A review. CHEMOSPHERE 2022; 294:133779. [PMID: 35114262 DOI: 10.1016/j.chemosphere.2022.133779] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
This survey distinguishes understudied spaces of arising impurity research in wastewaters and the habitat, and suggests bearing for future checking. Thinking about the impeding effect of toxins on human wellbeing and biological system, their discovery in various media including water is fundamental. This review sums up and assesses the latest advances in the electrochemical detecting of emerging contaminants (ECs). This survey is expected to add to the advancement in electrochemical applications towards the ECs. Different electrochemical insightful procedures like Amperometry, Voltammetry has been examined in this overview. The improvement of cutting edge nanomaterial-based electrochemical sensors and biosensors for the discovery of drug compounds has accumulated monstrous consideration because of their benefits, like high affectability and selectivity, continuous observing, and convenience has been reviewed in this survey. This survey likewise features the diverse electrochemical treatment procedures accessible for the removal of ECs.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
22
|
Chen Y, Waterhouse GIN, Qiao X, Sun Y, Xu Z. Sensitive analytical detection of nitrite using an electrochemical sensor with STAB-functionalized Nb 2C@MWCNTs for signal amplification. Food Chem 2022; 372:131356. [PMID: 34818750 DOI: 10.1016/j.foodchem.2021.131356] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
An electrochemical sensor based on stearyl trimethyl ammonium bromide - functionalized niobium carbide@multi-walled carbon nanotubes (Nb2C@MWCNTs-STAB) for signal amplification was successfully constructed for sensitive detection of nitrite (NO2-). Niobium carbide@multi-walled carbon nanotubes (Nb2C@MWCNTs) with high electrical conductivity and water dispersibility were first prepared in a one-pot hydrothermal synthesis, after which cationic STAB was added to overcome the negative surface charge on the Nb2C@MWCNTs. The electrostatic attraction between Nb2C@MWCNTs-STAB and NO2- was improved by the STAB, which enhanced the sensitivity of the constructed sensor for NO2-. Under optimized conditions, Nb2C@MWCNTs-STAB/GCE exhibited excellent analytical performance for detection NO2- with two wide liner ranges (0.1-100 μmol L-1 and 100-2000 μmol L-1) and a limit of detection of 0.022 μmol L-1. Nitrite recovery tests in milk and spinach samples showed recoveries in the range of 89.82-104.52%. The NO2- residues in ham and pickled vegetable (cedrela sinensis) samples were analysed using the presented sensor and a spectrophotometric method, with no significant difference found between the results of the two methods.
Collapse
Affiliation(s)
- Yongfeng Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yufeng Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
23
|
Afzali A, Tabasi ZA, Zhang BH, Zhao Y. Studies of a bola-type bis(dithiafulvene) molecular system: synthesis, crystal structure, and electrochemical properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj01796b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bis(dithiafulvene) compound that contains a 1,3-diphenoxypropane central unit was designed and investigated in this work.
Collapse
Affiliation(s)
- Azedeh Afzali
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Zahra A. Tabasi
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Baiyu H. Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Yuming Zhao
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
24
|
Michalkiewicz S, Skorupa A, Jakubczyk M. Carbon Materials in Electroanalysis of Preservatives: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7630. [PMID: 34947225 PMCID: PMC8709479 DOI: 10.3390/ma14247630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Electrochemical sensors in electroanalysis are a particularly useful and relatively simple way to identify electroactive substances. Among the materials used to design sensors, there is a growing interest in different types of carbon. This is mainly due to its non-toxic properties, low cost, good electrical conductivity, wide potential range, and the possibility of using it in both aqueous and nonaqueous media. The electrodes made of carbon, and especially of carbon modified with different materials, are currently most often used in the voltammetric analysis of various compounds, including preservatives. The objective of this paper is to present the characteristics and suitability of different carbon materials for the construction of working electrodes used in the voltammetric analysis. Various carbon materials were considered and briefly discussed. Their analytical application was presented on the example of the preservatives commonly used in food, cosmetic, and pharmaceutical preparations. It was shown that for the electroanalysis of preservatives, mainly carbon electrodes modified with various modifiers are used. These modifications ensure appropriate selectivity, high sensitivity, low limits of detection and quantification, as well as a wide linearity range of voltammetric methods of their identification and determination.
Collapse
Affiliation(s)
- Slawomir Michalkiewicz
- Institute of Chemistry, Jan Kochanowski University, PL-25406 Kielce, Poland; (A.S.); (M.J.)
| | | | | |
Collapse
|
25
|
Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many scientists are increasingly interested in on-site detection methods of phenol and its derivatives because these substances have been universally used as a significant raw material in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs, antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a toxic response that induces harsh impacts on plants, animals, and human health. This mini-review updates recent developments and trends of novel plasmonic resonance nanomaterials, which are assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel trends in the optical sensors of phenolic compounds. The applications of Raman technologies based on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented, in which the remaining establishments and challenges are discussed and summarized to inspire the future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid and trace detection of phenol and its derivatives.
Collapse
|