1
|
Sobahi N, Alam MM, Imran M, Khan ME, Mohammad A, Yoon T, Mehedi IM, Hussain MA, Abdulaal MJ, Jiman AA. Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance. Molecules 2024; 29:2439. [PMID: 38893314 PMCID: PMC11173486 DOI: 10.3390/molecules29112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The measurement of glucose concentration is a fundamental daily care for diabetes patients, and therefore, its detection with accuracy is of prime importance in the field of health care. In this study, the fabrication of an electrochemical sensor for glucose sensing was successfully designed. The electrode material was fabricated using polyaniline and systematically characterized using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV-visible spectroscopy. The polyaniline nanofiber-modified electrode showed excellent detection ability for glucose with a linear range of 10 μM to 1 mM and a detection limit of 10.6 μM. The stability of the same electrode was tested for 7 days. The electrode shows high sensitivity for glucose detection in the presence of interferences. The polyaniline-modified electrode does not affect the presence of interferences and has a low detection limit. It is also cost-effective and does not require complex sample preparation steps. This makes it a potential tool for glucose detection in pharmacy and medical diagnostics.
Collapse
Affiliation(s)
- Nebras Sobahi
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.S.)
| | - Md. Mottahir Alam
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.S.)
| | - Mohd Imran
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Republic of Korea
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Gyeongbuk-do, Republic of Korea
| | - Ibrahim M. Mehedi
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.S.)
- Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad A. Hussain
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.S.)
| | - Mohammed J. Abdulaal
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.S.)
| | - Ahmad A. Jiman
- Department of Electrical & Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.S.)
| |
Collapse
|
2
|
Xin J, Kong S, Zhang X, Yang Y, Wang X. Simultaneous removal of methylene blue and Cr(VI) in a dual-chamber photocatalytic microbial fuel cell with WO 3/MoS 2/FTO photocathode. Heliyon 2024; 10:e29204. [PMID: 38644858 PMCID: PMC11033111 DOI: 10.1016/j.heliyon.2024.e29204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
Carbon felt was used as the anode and WO3/MoS2/FTO (fluorine-doped tin oxide) was used as the photocathode in a photocatalytic microbial fuel cell (PMFC). The photoelectric performance of the WO3/MoS2/FTO photocathode and the removal efficiency of methylene blue (MB) and Cr(VI) mixed pollutants were systematically investigated in the cathode chamber. The results showed that after 12 h of light irradiation in the PMFC with WO3/MoS2/FTO as the photocathode, the removal rates of MB and Cr(VI) were 84.56 and 68.11 %, respectively, which were much higher than those using WO3/FTO as a photocathode (55.57 % and 45.26 %, respectively). The corresponding maximum output power was 33.14 mW/m2, which was 1.85 times that of the WO3/FTO photocathode PMFC. These results can be attributed to the fact that WO3 is an n-type semiconductor and MoS2 is a p-type semiconductor. Analysis of trapping experiments showed that the composite of WO3 and MoS2 formed a Z-scheme heterojunction, which improved the separation efficiency of the photoelectric carriers and enhanced the pollutant removal efficiency of the photocathode. PMFCs are a new and environment-friendly technology for removing pollutants thereby providing an experimental basis for future engineering applications.
Collapse
Affiliation(s)
- Jiye Xin
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| | - Shishi Kong
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| | - Xiaoliang Zhang
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| | - Yujuan Yang
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| | - Xuan Wang
- School of Ecology and Environment, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
- Key Laboratory of Environmental Pollution Control and Waste Recycling, Inner Mongolia Autonomous Region, 24 Zhaojun Road, Hohhot, Inner Mongolia, 010070, China
| |
Collapse
|
3
|
Sharma R, Rana DS, Gupta N, Thakur S, Thakur KK, Singh D. Parthenium hysterophorus derived nanostructures as an efficient carbocatalyst for the electrochemical sensing of mercury(II) ions. CHEMOSPHERE 2024; 354:141591. [PMID: 38460846 DOI: 10.1016/j.chemosphere.2024.141591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
The sustainable utilization of resources motivate us to create eco-friendly processes for synthesizing novel carbon nanomaterials from waste biomass by minimizing chemical usage and reducing energy demands. By keeping sustainability as a prime focus in the present work, we have made the effective management of Parthenium weeds by converting them into carbon-based nanomaterial through hydrothermal treatment followed by heating in a tube furnace under the nitrogen atmosphere. The XPS studies confirm the natural presence of nitrogen and oxygen-containing functional groups in the biomass-derived carbon. The nanostructure has adopted a layered two-dimensional structure, clearly indicated through HRTEM images. Further, the nanomaterials are analyzed for their ability towards the electrochemical detection of mercury, with a detection limit of 6.17 μM, while the limit of quantification and sensitivity was found to be 18.7 μM and 0.4723 μM μA-1 cm-2, respectively. The obtained two-dimensional architecture has increased the surface area, while the nitrogen and oxygen functional groups act as an active site for sensing the mercury ions. This study will open a new door for developing metal-free catalysts through a green and sustainable approach by recycling and utilization of waste biomass.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, HP, India
| | | | - Neeraj Gupta
- Department of Chemistry and Chemical Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, HP, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 4-100, Gliwice, Poland
| | - Kamal Kishor Thakur
- Department of Chemistry, University Institute of Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Dilbag Singh
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, HP, India.
| |
Collapse
|
4
|
Pooja P, Chin A. Remarkably fast and reusable photocatalysis by UV annealed Cu 2O-SnO 2 p-n heterojunction. CHEMOSPHERE 2024; 349:140787. [PMID: 38008294 DOI: 10.1016/j.chemosphere.2023.140787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Powdered micro- or nano-particles photocatalyst has separation and recovery challenges, which may create a second pollution to environment and harmful to animals. To address those issues, SnO2, Cu2O and Cu2O-SnO2 p-n heterojunction thin films are formed on glass substrates using efficient co-sputtering method that is commonly employed for large-area high-definition display panel. Using first-order kinetics, 100 °C ultraviolet (UV) annealed Cu2O-SnO2 p-n heterojunction shows the superb fast degradation rate constant of 0.21 and 0.16 min-1 for methylene blue (MB) and methyl orange (MO) organic dyes, respectively, as photogenerated electron-hole pairs is increased. Record best degradation rate constants of 0.19 and 0.11 min-1 for respective MB and MO are still achieved even after four repeated cycles. The 100 °C UV annealed Cu2O-SnO2 film catalyst displays greater degradation efficiency in both dyes, reaching 100% degradation at room temperature after 30 and 35 min of illumination for MB and MO respectively. The scavenger experiments show that hydroxyl (·OH) and superoxide radicals (·O2-) are the major active species in the degradation of dye. The 100 °C UV annealed Cu2O-SnO2 film catalyst showed stability as well as reusability towards the dye degradation. As a result, the present work delivers an effective way to enhance the photocatalytic performance and also an easy recovery of the catalyst, which can be explored for various emerging pollutants.
Collapse
Affiliation(s)
- Pheiroijam Pooja
- Department of Electronics Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Albert Chin
- Department of Electronics Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
5
|
Rajalakshmi K, Muthusamy S, Lee HJ, Kannan P, Zhu D, Silviya Lodi R, Xie M, Xie J, Song JW, Xu Y. Quinoline-derived electron-donating/withdrawing fluorophores for hydrazine detection and applications in environment and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123282. [PMID: 37657372 DOI: 10.1016/j.saa.2023.123282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Substitution can be employed to competently tune the photophysical properties of chemosensors. The effect of substituents on the absorption and emission properties of quinoline probes was investigated. Therefore, salicylaldehyde (S), N-diethylamino-salicylaldehyde (D), and nitro-salicylaldehyde (W)-based quinoline Schiff base derivatives were investigated with hydrazine and studied for their photophysical properties. The nucleophilic substitution reaction was used as a sensing mechanism between the probes and hydrazine and investigated with 1H NMR, HR-MS characterizations, and DFT calculations. The sensitivity of QW-R is greater than that of QS-R and QD-R because of the stronger intramolecular charge transfer (ICT) in QW-R. The calculated LOD values are 28 nM for QS-R, 30 nM for QD-R, and 9 nM for QW-R. The probes were employed to monitor gaseous hydrazine using a smartphone and analyze solution forms of hydrazine in soil, water, and food samples, and living cells. Moreover, the in situ hydrazine release was monitored with bioimaging by administering an isoniazid drug. Significantly, the electronic effect of substituents over fluorescence showing, ranging from electron-donating to electron-withdrawing was investigated. We anticipate that this approach may be a promising strategy for the rational design of fluorescent sensors.
Collapse
Affiliation(s)
- Kanagaraj Rajalakshmi
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Selvaraj Muthusamy
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN 38134, USA
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital and Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | | | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jimin Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jong-Won Song
- Department of Chemistry Education, Daegu University, Daegudae-ro 201, Gyeongsan-si, Gyeongsangbuk-do 38453, Republic of Korea.
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Dai H, Yang X, Li W, Wang Y. AgBr nanoparticle surface modified SnO 2 enhanced visible light catalytic performance: characterization, mechanism and kinetics study. RSC Adv 2023; 13:32457-32472. [PMID: 37928858 PMCID: PMC10624157 DOI: 10.1039/d3ra05750j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
In this study, a simple hydrothermal procedure and in situ precipitation method were used to prepare SnO2-AgBr composites, where the molar ratios of SnO2 and AgBr were 1 : 1, 1 : 2 and 2 : 1. Characterization results showed that the composites had excellent dispersion, crystallinity, and purity. A photocatalytic degradation experiment and first-order kinetic model indicate that SnO2-AgBr (1 : 1) had the best photocatalytic performance, and the degradation rates of 30 mg L-1 simulated MO and MG wastewater reached 96.71% and 93.36%, respectively, in 150 min, which were 3.5 times those of SnO2. The degradation rate of MO and MG increases with the dosage. Humic acid inhibited the degradation of MG, while a low concentration of humic acid promoted the degradation of MO, and the composite has good stability with pH. A free radical trapping experiment shows that ·OH and ·O2- were the main active substances, and h+ was the secondary one. According to the results of the characterization and photocatalysis experiments, a Z-scheme mechanism for the SnO2-AgBr composite was proposed, and the degradation pathway of target pollutants was speculated upon. This study has conceived novel methods for the development of a mature Z-scheme mechanism and in doing so has provided new approaches for the development of photocatalysis for water pollution control.
Collapse
Affiliation(s)
- Hengcan Dai
- College of Civil Engineering, Guizhou University Guiyang 555000 PR China
| | - Xiaoliang Yang
- POWERCHINA Guizhou Electric Power Engineering Co., Ltd Guiyang 555000 PR China
| | - WanLi Li
- Guizhou Polytechnic of Construction Guiyang 551400 PR China
| | - Yukai Wang
- College of Civil Engineering, Guizhou University Guiyang 555000 PR China
| |
Collapse
|
7
|
Yang D, Xia Y, Zhang L, Liu J, Zhu X, Feng W. Investigation on the Structural and Photocatalytic Performance of Oxygen-Vacancy-Enriched SnO 2-CeO 2 Heterostructures. Int J Mol Sci 2023; 24:15446. [PMID: 37895125 PMCID: PMC10607804 DOI: 10.3390/ijms242015446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, pure CeO2 and oxygen-vacancy-enriched SnO2-CeO2 composite materials were prepared using the sol-gel method, and their microstructures and photocatalytic properties were investigated. The results indicate that SnO2 coupling promotes the separation and transfer of photogenerated electrons and holes and suppresses their recombination. The 50% SnO2-CeO2 composite material exhibited a decreased specific surface area compared to pure CeO2 but significantly increased oxygen vacancy content, demonstrating the highest photogenerated charge separation efficiency and the best photocatalytic performance. After 120 min of illumination, the degradation degree of MB by the 50% SnO2-CeO2 composite material increased from 28.8% for pure CeO2 to 90.8%, and the first-order reaction rate constant increased from 0.002 min-1 to 0.019 min-1.
Collapse
Affiliation(s)
| | | | | | | | - Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (D.Y.); (Y.X.); (J.L.)
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (D.Y.); (Y.X.); (J.L.)
| |
Collapse
|
8
|
Saei JN, Asadpour-Zeynali K. Enhanced electrocatalytic activity of fluorine doped tin oxide (FTO) by trimetallic spinel ZnMnFeO 4/CoMnFeO 4 nanoparticles as a hydrazine electrochemical sensor. Sci Rep 2023; 13:12188. [PMID: 37500942 PMCID: PMC10374622 DOI: 10.1038/s41598-023-39321-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023] Open
Abstract
In the present study, ZnMnFeO4 and CoMnFeO4 tri-metallic spinel oxide nanoparticles (NPs) were provided using hydrothermal methods. The nanoparticles have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and electrochemical techniques. A reliable and reproducible electrochemical sensor based on ZnMnFeO4/CoMnFeO4/FTO was fabricated for rapid detection and highly sensitive determination of hydrazine by the DPV technique. It is observed that the modified electrode causes a sharp growth in the oxidation peak current and a decrease in the potential for oxidation, contrary to the bare electrode. The cyclic voltammetry technique showed that there is high electrocatalytic activity and excellent sensitivity in the suggested sensor for hydrazine oxidation. Under optimal experimental conditions, the DPV method was used for constructing the calibration curve, and a linear range of 1.23 × 10-6 M to 1.8 × 10-4 M with a limit of detection of 0.82 ± 0.09 μM was obtained. The obtained results indicate that ZnMnFeO4/CoMnFeO4/FTO nano sensors exhibit pleasant stability, reproducibility, and repeatability in hydrazine measurements. In addition, the suggested sensor was efficiently employed to ascertain the hydrazine in diverse samples of cigarette tobacco.
Collapse
Affiliation(s)
- Jalal Niazi Saei
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Karim Asadpour-Zeynali
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-16471, Iran.
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 51664, Iran.
| |
Collapse
|
9
|
Nagaraj K, Naman J, Dixitkumar M, Priyanshi J, Thangamuniyandi P, Kamalesu S, Lokhandwala S, Parekh NM, Rekha Panda S, Sakthinathan S, Chiu TW, Karuppiah C, Karthikeyan A, Kalai Selvam I. Green synthesis of Ag@ZnO nanocomposites using Cassia Alata leaf extract and surfactant complex for photodegradation of Rhodamin6G. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
A coumarin-based fluorescent probe for hydrazine detection and its applications in real water samples and living cells. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Huang J, Zhou Y, Wang W, Zhu J, Li X, Fang M, Wu Z, Zhu W, Li C. A fluorescent probe based on triphenylamine with AIE and ICT characteristics for hydrazine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122011. [PMID: 36279799 DOI: 10.1016/j.saa.2022.122011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
A fluorescent probe MAM based on triphenylamine scaffold was synthesized. The electron donating group 4-methoxyphenyl and the electron acceptor dicyanoethylene were introduced on the triphenylamine scaffold to form a D-π-A fluorescent probe. The probe MAM exhibited the typical aggregation-induced emission (AIE) and intramolecular charge transfer (ICT) characteristics with the bright orange-red fluorescent emission in high water fraction (fw ≥ 50%) and negligible emission in low water fraction. The probe MAM could detect hydrazine (N2H4) in DMSO-tris-HCl (10 mM, pH7.4, v/v, 3:1) with high selectivity and sensitivity. The specific reaction between MAM and hydrazine and the formation of the hydrazone blocked the ICT process, and the system emitted the cyan fluorescence which could be easily observed by naked eyes. The limit of detection (LOD) was 0.196 μM (6.25 ppb), which is lower than the US Environmental Protection Agency standard (10 ppb). The test strips prepared by the probe MAM could realize the convenient and rapid detection of N2H4 solution and vapor. The application of MAM in actual water samples and cells was investigated, and the results showed that MAM could sense N2H4 in environmental and biological aspects with potential application prospects.
Collapse
Affiliation(s)
- Junjie Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yanhang Zhou
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Wenxiang Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jiamian Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Xinchen Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, PR China.
| | - Zhenyu Wu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China
| | - Cun Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
12
|
Neti S, Rani Nanmangalam A, Narasimhulu Chintakuntla C, Ramasamy T, Sankaranarayanan S. Structural influence of strontium titanate nanocubes for photocatalytic dye degradation and electrochemical applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Ghaseminasab K, Aletaha N, Hasanzadeh M. Smartphone-assisted microfluidic and spectrophotometric recognition of hydrazine: a new platform towards rapid analysis of carcinogenic agents and environmental technology. RSC Adv 2023; 13:3575-3585. [PMID: 36756594 PMCID: PMC9890555 DOI: 10.1039/d2ra07761b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Hydrazine (Hyd), a poisonous substance, is frequently employed in agriculture and industry as a scavenger to remove residues of oxygen from boiler feed water, electrical power plants, etc. Even at trace amounts, these chemicals are hazardous to humans. To limit the risks of exposure, there is a critical need for sensors for the monitoring of Hyd concentration to guarantee they are below harmful levels. In comparison to other approaches, the colorimetric method has garnered a great deal of interest due to its high sensitivity, speed, convenience, and simple optical color change detection. This study's primary purpose is to develop a portable tool for the colorimetric and spectrophotometric detection of Hyd using silver nanoparticles (silver nanoprism (AgNPr), silver nanowires (AgNW), and silver citrate (AgCit)). In addition, UV-visible spectroscopy was utilized for the quantitation evaluation of Hyd in real samples. The proposed approach demonstrated a linear range of 0.08 M to 6 M for Hyd by AgNW and 0.02 to 5 M by AgNPr as optical probes, whereas AgCit exhibited no color change (negative response). Using AgNPr and AgNW, the low limit of detection of Hyd was 200 μM and 800 μM, respectively. In addition, a novel method was employed for the first time to explore the effect of time on the determination of the candidate analyte. Consequently, the proposed method can be utilized to detect Hyd in real samples. Therefore, our method shows both qualitative and quantitative measurement of Hyd with high sensitivity, low cost, and fast analysis time and promisingly it can be industrialized for quick detection of Hyd in aquatic real samples.
Collapse
Affiliation(s)
- Kambiz Ghaseminasab
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nastaran Aletaha
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
14
|
adir Mahieddine A, Adnane-Amara L. Constructing and electrochemical performance of NiCo-LDHs@h-Ni NWs core-shell for hydrazine detection in environmental samples. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Facile Fabrication of CuO Nanoparticles Embedded in N-Doped Carbon Nanostructure for Electrochemical Sensing of Dopamine. Bioinorg Chem Appl 2022; 2022:6482133. [PMID: 36276988 PMCID: PMC9586835 DOI: 10.1155/2022/6482133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
In the present study, a highly selective and sensitive electrochemical sensing platform for the detection of dopamine was developed with CuO nanoparticles embedded in N-doped carbon nanostructure (CuO@NDC). The successfully fabricated nanostructures were characterized by standard instrumentation techniques. The fabricated CuO@NDC nanostructures were used for the development of dopamine electrochemical sensor. The reaction mechanism of a dopamine on the electrode surface is a three-electron three-proton process. The proposed sensor's performance was shown to be superior to several recently reported investigations. Under optimized conditions, the linear equation for detecting dopamine by differential pulse voltammetry is Ipa (μA) = 0.07701 c (μM) − 0.1232 (R2 = 0.996), and the linear range is 5-75 μM. The limit of detection (LOD) and sensitivity were calculated as 0.868 μM and 421.1 μA/μM, respectively. The sensor has simple preparation, low cost, high sensitivity, good stability, and good reproducibility.
Collapse
|
16
|
Hierarchical layered double NiCo oxide/core-shell arrays structure functionalization with Au nanoparticles for highly sensitive hydrazine determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Lu S, Hu Q, Yu L. Construction of a liquid Crystal-based Sensing Platform for the Sensitive Detection of Catalase in Human Serum. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Liu X, Li Y, Ma J, Zheng J. High-sensitivity amperometric hydrazine sensor based on AuNPs decorated with hollow-structured copper molybdenum sulfide nanomaterials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Electrochemical sensor design based on CuO nanosheets/ Cellulose derivative nanocomposite for hydrazine monitoring in environmental samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
A Target-Feedback Rolling-Cleavage Signal Amplifier for Ultrasensitive Electrochemical Detection of miRNA with Self-Assembled CeO2@Ag Hybrid Nanoflowers. Bioelectrochemistry 2022; 146:108152. [DOI: 10.1016/j.bioelechem.2022.108152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 01/15/2023]
|
21
|
Chen Y, Waterhouse GIN, Qiao X, Sun Y, Xu Z. Sensitive analytical detection of nitrite using an electrochemical sensor with STAB-functionalized Nb 2C@MWCNTs for signal amplification. Food Chem 2022; 372:131356. [PMID: 34818750 DOI: 10.1016/j.foodchem.2021.131356] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
An electrochemical sensor based on stearyl trimethyl ammonium bromide - functionalized niobium carbide@multi-walled carbon nanotubes (Nb2C@MWCNTs-STAB) for signal amplification was successfully constructed for sensitive detection of nitrite (NO2-). Niobium carbide@multi-walled carbon nanotubes (Nb2C@MWCNTs) with high electrical conductivity and water dispersibility were first prepared in a one-pot hydrothermal synthesis, after which cationic STAB was added to overcome the negative surface charge on the Nb2C@MWCNTs. The electrostatic attraction between Nb2C@MWCNTs-STAB and NO2- was improved by the STAB, which enhanced the sensitivity of the constructed sensor for NO2-. Under optimized conditions, Nb2C@MWCNTs-STAB/GCE exhibited excellent analytical performance for detection NO2- with two wide liner ranges (0.1-100 μmol L-1 and 100-2000 μmol L-1) and a limit of detection of 0.022 μmol L-1. Nitrite recovery tests in milk and spinach samples showed recoveries in the range of 89.82-104.52%. The NO2- residues in ham and pickled vegetable (cedrela sinensis) samples were analysed using the presented sensor and a spectrophotometric method, with no significant difference found between the results of the two methods.
Collapse
Affiliation(s)
- Yongfeng Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Yufeng Sun
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
22
|
Morisot F, Zuliani C, Mouis M, Luque J, Montemont C, Maindron T, Ternon C. Role of Working Temperature and Humidity in Acetone Detection by SnO2 Covered ZnO Nanowire Network Based Sensors. NANOMATERIALS 2022; 12:nano12060935. [PMID: 35335751 PMCID: PMC8954651 DOI: 10.3390/nano12060935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/07/2022]
Abstract
A randomly oriented nanowire network, also called nanonet (NN), is a nano-microstructure that is easily integrated into devices while retaining the advantages of using nanowires. This combination presents a highly developed surface, which is promising for sensing applications while drastically reducing integration costs compared to single nanowire integration. It now remains to demonstrate its effective sensing in real conditions, its selectivity and its real advantages. With this work, we studied the feasibility of gaseous acetone detection in breath by considering the effect of external parameters, such as humidity and temperature, on the device’s sensitivity. Here the devices were made of ZnO NNs covered by SnO2 and integrated on top of microhotplates for the fine and quick control of sensing temperature with low energy consumption. The prime result is that, after a maturation period of about 15 h, the devices are sensitive to acetone concentration as low as 2 ppm of acetone at 370 °C in an alternating dry and wet (50% of relative humidity) atmosphere, even after 90 h of experiments. While still away from breath humidity conditions, which is around 90% RH, the sensor response observed at 50% RH to 2 ppm of acetone shows promising results, especially since a temperature scan allows for ethanol’s distinguishment.
Collapse
Affiliation(s)
- Fanny Morisot
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France;
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), IMEP-LAHC, F-38000 Grenoble, France;
| | - Claudio Zuliani
- AMS Sensors UK Limited, Deanland House, Cowley Road, Cambridge CB4 0DL, UK; (C.Z.); (J.L.)
| | - Mireille Mouis
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), IMEP-LAHC, F-38000 Grenoble, France;
| | - Joaquim Luque
- AMS Sensors UK Limited, Deanland House, Cowley Road, Cambridge CB4 0DL, UK; (C.Z.); (J.L.)
| | - Cindy Montemont
- Univ. Grenoble-Alpes, CEA-LETI, MINATEC Campus, 17 Rue des Martyrs, CEDEX 9, F-38054 Grenoble, France; (C.M.); (T.M.)
| | - Tony Maindron
- Univ. Grenoble-Alpes, CEA-LETI, MINATEC Campus, 17 Rue des Martyrs, CEDEX 9, F-38054 Grenoble, France; (C.M.); (T.M.)
| | - Céline Ternon
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LMGP, F-38000 Grenoble, France;
- Correspondence:
| |
Collapse
|
23
|
Palladium-Nickel Electrocatalysts on Nitrogen-Doped Reduced Graphene Oxide Nanosheets for Direct Hydrazine/Hydrogen Peroxide Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11111372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the present work, nitrogen-doped reduced graphene oxide-supported (NrGO) bimetallic Pd–Ni nanoparticles (NPs), fabricated by means of the electrochemical reduction method, are investigated as an anode electrocatalyst in direct hydrazine–hydrogen peroxide fuel cells (DHzHPFCs). The surface and structural characterization of the synthesized catalyst affirm the uniform deposition of NPs on the distorted NrGO. The electrochemical studies indicate that the hydrazine oxidation current density on Pd–Ni/NrGO is 1.81 times higher than that of Pd/NrGO. The onset potential of hydrazine oxidation on the bimetallic catalyst is also slightly more negative, i.e., the catalyst activity and stability are improved by Ni incorporation into the Pd network. Moreover, the Pd–Ni/NrGO catalyst has a large electrochemical surface area, a low activation energy value and a low resistance of charge transfer. Finally, a systematic investigation of DHzHPFC with Pd–Ni/NrGO as an anode and Pt/C as a cathode is performed; the open circuit voltage of 1.80 V and a supreme power density of 216.71 mW cm−2 is obtained for the synthesized catalyst at 60 °C. These results show that the Pd–Ni/NrGO nanocatalyst has great potential to serve as an effective and stable catalyst with low Pd content for application in DHzHPFCs.
Collapse
|