1
|
Khan AS, Sahu SK, Dash SK, Mishra T, Padhan AR, Padhan D, Dash SL, Sarangi MK. The Exploration of Nanozymes for Biosensing of Pathological States Tailored to Clinical Theranostics. Chem Biodivers 2024; 21:e202401326. [PMID: 39041292 DOI: 10.1002/cbdv.202401326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
The nanozymes (NZs) are the artificial catalyst deployed for biosensing with their uniqueness (high robustness, surface tenability, inexpensive, and stability) for obtaining a better response/miniaturization of the varied sensors than their traditional ancestors. Nowadays, nanomaterials with their broadened scale such as metal-organic frameworks (MOFs), and metals/metal oxides are widely engaged in generating NZ-based biosensors (BS). Diverse strategies like fluorescent, colorimetric, surface-enhanced Raman scattering (SERS), and electrochemical sensing principles were implemented for signal transduction of NZs. Despite broad advantages, numerous encounters (like specificity, feasibility, stability, and issues in scale-up) are affecting the potentialities of NZs-based BS, and thus need prior attention for a promising exploration for a revolutionary outcome in advanced theranostics. This review includes different types of NZs, and the progress of numerous NZs tailored bio-sensing techniques in detecting abundant bio analytes for theranostic purposes. Further, the discussion highlighted some recent challenges along with their progressive way of possibly overcoming followed by commercial outbreaks.
Collapse
Affiliation(s)
- Abdul Sayeed Khan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Sudhir Kumar Sahu
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Santosh Kumar Dash
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Tankadhar Mishra
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Amiya Ranjan Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | - Damodar Padhan
- The Pharmaceutical College, Tingipali, Barpali, Bargarh, Odisha, 768029, India
| | | | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| |
Collapse
|
2
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2024:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
3
|
Li Y, Liu LE, Han H, Yuan X, Ji J, Xue L, Wu Y, Yang R. A signal-switchable photoelectrochemical biosensor for ultrasensitive detection of long non-coding RNA in cancer cells. Talanta 2024; 273:125878. [PMID: 38492286 DOI: 10.1016/j.talanta.2024.125878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Long non-coding RNA (LncRNA) as an emerging tumor biomarker plays a key factor in the early diagnosis of cancer. Herein, an innovative signal-switchable photoelectrochemical (PEC) biosensor based on ZrO2@CuO bimetallic oxides and T7 Exo-assisted signal amplification is reported for the ultrasensitive and selective detection of lncRNA (HOX gene antisense intergenic RNA, HOTAIR) in cancer cells. Firstly, MOFs-derived TiO2 nanodisks as an excellent photoactive material show an anodic background signal. When target lncRNA exists, the abundant auxiliary DNA1 is freed from T7 Exo-assisted cycle signal amplification, and then competitively hybridizes with auxiliary DNA2 on the electrode. Subsequently, bimetallic MOFs-derived ZrO2@CuO octahedra with a high specific surface area and porous structure are introduced into TiO2 nanodisks-modified biosensor, which appears a cathodic photocurrent and achieves a switchable signal. The developed signal-switchable PEC biosensor shows ultrasensitive detection of lncRNA HOTAIR with a detection limit of 0.12 fM, and can eliminate the false interference. Importantly, the established PEC biosensor has good correlation with RT-qPCR analysis (P < 0.05) for the quantification of lncRNA HOTAIR in cancer cells, which has great potential application for biomarker detection in the early diagnosis of cancer.
Collapse
Affiliation(s)
- Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-E Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hangchen Han
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinxin Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangying Ji
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Linsheng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Li J, Cai X, Jiang P, Wang H, Zhang S, Sun T, Chen C, Fan K. Co-based Nanozymatic Profiling: Advances Spanning Chemistry, Biomedical, and Environmental Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307337. [PMID: 37724878 DOI: 10.1002/adma.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Nanozymes, next-generation enzyme-mimicking nanomaterials, have entered an era of rational design; among them, Co-based nanozymes have emerged as captivating players over times. Co-based nanozymes have been developed and have garnered significant attention over the past five years. Their extraordinary properties, including regulatable enzymatic activity, stability, and multifunctionality stemming from magnetic properties, photothermal conversion effects, cavitation effects, and relaxation efficiency, have made Co-based nanozymes a rising star. This review presents the first comprehensive profiling of the Co-based nanozymes in the chemistry, biology, and environmental sciences. The review begins by scrutinizing the various synthetic methods employed for Co-based nanozyme fabrication, such as template and sol-gel methods, highlighting their distinctive merits from a chemical standpoint. Furthermore, a detailed exploration of their wide-ranging applications in biosensing and biomedical therapeutics, as well as their contributions to environmental monitoring and remediation is provided. Notably, drawing inspiration from state-of-the-art techniques such as omics, a comprehensive analysis of Co-based nanozymes is undertaken, employing analogous statistical methodologies to provide valuable guidance. To conclude, a comprehensive outlook on the challenges and prospects for Co-based nanozymes is presented, spanning from microscopic physicochemical mechanisms to macroscopic clinical translational applications.
Collapse
Affiliation(s)
- Jingqi Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinda Cai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Peng Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Huayuan Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shiwei Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, P. R. China
- Aulin College, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Zhu F, Zhao Q. CRISPR/Cas12a linked sandwich aptamer assay for sensitive detection of thrombin. Anal Chim Acta 2024; 1287:342106. [PMID: 38182384 DOI: 10.1016/j.aca.2023.342106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Thrombin is a serine protease and hemostasis regulator with multiple functions and recognized as an important biomarker for diseases, and sensitive detection of thrombin is of significance for clinical diagnostics and disease monitoring. Recently, the target-triggered nonspecific single-stranded deoxyribonuclease activity of CRISPR/Cas system is discovered, making it become a powerful tool in assay developments due to the ease of signal amplification. In the short period of development, many CRISPR based nucleic acid detection methods have already played a critical role in clinical diagnostics. However, the application of CRISPR/Cas system for protein biomarkers remains limited. RESULTS Here we describe a CRISPR/Cas12a linked sandwich aptamer assay for detection of thrombin, which was based on the formation of a sandwich complex of target by using a capture aptamer or antibody coated on the microplate and a well-designed detection DNA strand. The detection DNA strand contained an anti-thrombin aptamer and an active DNA of Cas12a, thus the sandwich complex was labeled with the active DNA. The active DNA triggered activity of Cas12a in indiscriminately cleaving fluorophore and quencher labeled DNA reporters, causing significant fluorescence increase. Our method enabled sensitive detection of thrombin down to 10 pM, and it showed high selectivity for thrombin. The assay exhibited good performance in diluted serum samples, demonstrating the applicability for thrombin analysis in the real media. SIGNIFICANCE This assay combines the merits of high affinity of aptamer, trans-cleavage activity of Cas12a, high selectivity of sandwich format analysis, and high-throughput detection of microplate assay, and it shows promise in applications.
Collapse
Affiliation(s)
- Fengxi Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
6
|
Gao F, Zhao Y, Dai X, Xu W, Zhan F, Liu Y, Wang Q. Aptamer tuned nanozyme activity of nickel-metal-organic framework for sensitive electrochemical aptasensing of tetracycline residue. Food Chem 2024; 430:137041. [PMID: 37527574 DOI: 10.1016/j.foodchem.2023.137041] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
It is urgently needed to develop high-performance method for tetracycline (TC) analysis to meet the growing concerns about food safety. Herein, a MOF of Ni2+-2,3,6,7,10,11-hexahydroxytriphenylene (Ni-HHTP) with peroxidase activity has been prepared and coated on a screen printing electrode, followed by non-covalent adsorption of tetracycline aptamer (TC-Apt) through the π-stacking. The spectroscopic and electrochemical assays show that TC-Apt can effectively enhance the nanozyme activity of Ni-HHTP using 3,3',5,5'-tetramethylbenzidine (TMB)/H2O2 as the probe. Upon binding with TC, the configuration of TC-Apt is changed and desorbs from the Ni-HHTP, resulting in the decrease of the nanozyme activity of aptasensor. Based on this principle, the target TC can be analyzed in concentrations ranging from 10 pM to 1.0 μM, with a detection limit of 1.9 pM. The aptsensor is also applicable for TC analysis in fresh Ctenopharyngodon idella meat and milk, which provides a new approach for TC residue monitoring in food.
Collapse
Affiliation(s)
- Feng Gao
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yanan Zhao
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaohui Dai
- Zhangzhou Products Quality Supervision Institute, Zhangzhou 363000, China
| | - Wenjing Xu
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Fengping Zhan
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yibin Liu
- Zhangzhou Products Quality Supervision Institute, Zhangzhou 363000, China
| | - Qingxiang Wang
- The Department of Chemistry and Environment Science, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
7
|
Kurup CP, Ahmed MU. Nanozymes towards Personalized Diagnostics: A Recent Progress in Biosensing. BIOSENSORS 2023; 13:bios13040461. [PMID: 37185536 PMCID: PMC10136715 DOI: 10.3390/bios13040461] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023]
Abstract
This review highlights the recent advancements in the field of nanozymes and their applications in the development of point-of-care biosensors. The use of nanozymes as enzyme-mimicking components in biosensing systems has led to improved performance and miniaturization of these sensors. The unique properties of nanozymes, such as high stability, robustness, and surface tunability, make them an attractive alternative to traditional enzymes in biosensing applications. Researchers have explored a wide range of nanomaterials, including metals, metal oxides, and metal-organic frameworks, for the development of nanozyme-based biosensors. Different sensing strategies, such as colorimetric, fluorescent, electrochemical and SERS, have been implemented using nanozymes as signal-producing components. Despite the numerous advantages, there are also challenges associated with nanozyme-based biosensors, including stability and specificity, which need to be addressed for their wider applications. The future of nanozyme-based biosensors looks promising, with the potential to bring a paradigm shift in biomolecular sensing. The development of highly specific, multi-enzyme mimicking nanozymes could lead to the creation of highly sensitive and low-biofouling biosensors. Integration of nanozymes into point-of-care diagnostics promises to revolutionize healthcare by improving patient outcomes and reducing costs while enhancing the accuracy and sensitivity of diagnostic tools.
Collapse
Affiliation(s)
- Chitra Padmakumari Kurup
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| |
Collapse
|
8
|
Rational design of ZIF-67 derived hollow nanozyme through a general strategy for biosensing. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Deng D, Wen S, Wang Y, Liu J, Li F, Yang X. Covalent organic framework composites TpPa@CeO2 with catalytic activities for sensitive colorimetric detection of ascorbic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Zhong ZT, Ashraf G, Chen W, Song LB, Zhang SJ, Liu B, Zhao YD. A new strategy based on duplex-specific nuclease and DNA aptamer with modified hairpin structure for various analytes detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Jiang J, Kan X. Mimetic peroxidase based on a gold amalgam for the colorimetric sensing of trace mercury( ii) in water samples. Analyst 2022; 147:2388-2395. [DOI: 10.1039/d2an00560c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and effective AuNPs/H-rGO/CC colorimetric sensing interface was constructed for the sensitive, selective, and facile determination of Hg2+ in water samples.
Collapse
Affiliation(s)
- Jing Jiang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education;Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of ChemoBiosensing, Anhui Key Laboratory of Functional Molecular Solids, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|