1
|
Hu Z, Cheng M, Zhang Y, Zhang L, Xu H, Zhu X. A Sensitive and Quick Fluorescent Sensor for the "Turn-On" Detection and Imaging of Glutathione Based on Sulfur Quantum Dots and MnO 2 Nanosheets. LUMINESCENCE 2024; 39:e4929. [PMID: 39508153 DOI: 10.1002/bio.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Glutathione (GSH) is one of the most abundant bioethanol antioxidants in living cells. Here, a fluorescent probe based on MnO2 nanosheets and sulfur quantum dots (SQDs) was fabricated. Because of the synergistic effect of IFE and FRET, the fluorescence from SQDs was quenched by MnO2 nanosheets. In the presence of GSH, the fluorescence of SQDs could be recovered because of the reduction of MnO2 nanosheets by GSH. The method can detect GSH in the concentration range of 5 ~ 1000 μM with the detection limit as low as 1.26 μM. This quick, easy, and cost-effective sensor could be used for the quantification of GSH in serum samples and the imaging of GSH in Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Zhenlin Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Min Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leyao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huifeng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xi Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Alanazi AZ, Alhazzani K, Mostafa AM, Barker J, Ibrahim H, El-Wekil MM, Ali AMBH. A Novel Carbon Dot-Bromothymol Blue System for Ratiometric Colorimetric-Fluorometric Sensing of Glutathione in Urine: A Smartphone-Compatible Approach. J Fluoresc 2024:10.1007/s10895-024-04008-w. [PMID: 39465483 DOI: 10.1007/s10895-024-04008-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
This study presents a novel dual-modal approach for glutathione (GSH) detection using blue and yellow dual-emission carbon dots (BY-CDs) and bromothymol blue (BTB) at pH 8.0. The method employs both colorimetric and fluorometric detection modes, offering a new perspective on GSH quantification. BTB's blue coloration induces selective fluorescence quenching of the CDs' 610 nm emission peak, with minimal effect on the 445 nm peak. Upon GSH addition, the quinonoid structure (blue color) of BTB transforms to its benzenoid form (yellow color). This transformation triggers fluorescence restoration at 610 nm and significant quenching at 445 nm, enabling ratiometric fluorescence analysis (F610/F445). Concurrently, colorimetric detection is also ratiometric, based on measuring the ratio between the emerging yellow color peak (435 nm) and the decreasing blue color peak (618 nm) (A435/A618). The state-of-the-art aspect of this detection method lies in the strategic choice of dual-emission CDs and a dye with distinct absorption spectra that closely match the emission spectra of the CDs. This unique combination allows for dual detection with opposite responses in the two detection modes, enhancing selectivity and reliability. The probe was thoroughly characterized, and its detection mechanism was elucidated using various spectroscopic techniques. The method shows excellent linearity, a broad detection range, and low detection limits for both fluorometry (0.02 - 10.0 μM, 5.88 nM) and colorimetry (1.0 - 35.0 μM, 301.25 nM). Additionally, a smartphone-based platform was developed for colorimetric GSH determination, enhancing the method's potential for on-site analysis. The assay's practicality was validated through successful application to human urine samples, yielding excellent recovery values (97.33% to 99.13%).
Collapse
Affiliation(s)
- Ahmed Z Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aya M Mostafa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-Upon-Thames, London, KT1 2EE, UK
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - James Barker
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston-Upon-Thames, London, KT1 2EE, UK
| | - Hossieny Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- School of Biotechnology, Badr University in Assiut, Assiut, 2014101, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
3
|
Lu Y, Kang W, Yu Y, Lu H, Wang Y, Xu Z, Zeng J, Qin M, Xu X. A synergistically antimicrobial and antioxidant hyaluronic acid hydrogel for infected wounds. Int J Biol Macromol 2024; 269:131795. [PMID: 38670175 DOI: 10.1016/j.ijbiomac.2024.131795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/05/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024]
Abstract
Bacterial infections during wound healing impede the healing process and trigger local or systemic inflammatory reactions. Consequently, there is an urgent need to develop a new material with antimicrobial and antioxidant properties to promote infected wound healing. A synergistically antimicrobial and antioxidant hyaluronic acid hydrogel (HMn) is prepared by employing MnO2 nanosheets into 4ARM-PEG5000-SH crosslinked methacrylated hyaluronic acid (HAMA) network. The coordination between sulfhydryl groups of 4ARM-PEG5000-SH and MnO2 nanosheets ensures entrapment of the nanosheets within the hydrogel, while the interaction between 4ARM-PEG5000-SH and HAMA results in facile gelation through thiol-ene click reaction. MnO2 nanosheets exhibit strong photothermal properties and reactive oxygen species (ROS) scavenging abilities, while hyaluronic acid promotes wound healing. When subjected to near-infrared (NIR) irradiation, the HMn achieves a bactericidal rate of 95.24 % for Staphylococcus aureus and nearly 100 % for Escherichia coli. In animal experiments, treatment with the HMn under NIR irradiation results in the best wound healing outcomes. Both in vitro and vivo biocompatible assays demonstrate that the HMn has rarely cell cytotoxicity and tissue damage. The HMn is easy to prepare and has good biocompatibility as well as efficient antibacterial and antioxidant properties, providing a novel method for the treatment of infected wounds.
Collapse
Affiliation(s)
- Yongping Lu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China; Guangyuan Central Hospital, Guangyuan 628000, PR China
| | - Weiqi Kang
- Guangyuan Central Hospital, Guangyuan 628000, PR China
| | - Yue Yu
- Guangyuan Central Hospital, Guangyuan 628000, PR China
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan 628000, PR China
| | - Yuemin Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zhe Xu
- Guangyuan Central Hospital, Guangyuan 628000, PR China
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan 628000, PR China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
4
|
Athira ET, Satija J. Plasmonic nanoparticle etching-based optical sensors: current status and future prospects. Analyst 2023; 148:6188-6200. [PMID: 37916263 DOI: 10.1039/d3an01244a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Plasmonic nanoparticles are an emerging tool for developing label-free multicolorimetric sensors for biosensing and chemosensing applications. The color absorbed by nanoparticles from visible light is influenced by their size, shape, orientation, and interparticle distance. Differently sized and shaped gold and silver nanoparticles exhibit a wide range of colors, aiding in the development of label-free sensors. Etching is the process of oxidizing nanoparticles, which alters their aspect ratio, shape, plasmonic peak, and outward appearance. It is typically used to create sensitive sensing platforms. Through etching, analytes could be detected in a simple, sensitive, and selective manner. The multicolor readout of nanoparticle etching-based multicolorimetric sensors can overcome the limitations of conventional colorimetric assays and improve the accuracy of visual inspection. This review discusses different approaches for target sensing using nanoparticle etching strategies like direct etching, enzyme-mediated etching, chemical reaction-driven etching, and anti-etching-based sensors and their mechanisms. In the future, etching strategies could be modified into portable sensing devices to detect a variety of analytes, which will aid in the development of on-time, in situ, and point-of-care sensing systems.
Collapse
Affiliation(s)
- E T Athira
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Kim Y, Jang S, Chang C, Kim KT. Facile Strategy to Output Fluorescein from Nucleic Acid Interactions. Bioconjug Chem 2023; 34:1606-1612. [PMID: 37639511 DOI: 10.1021/acs.bioconjchem.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Biomolecular operations, which involve the conversion of molecular signals or interactions into specific functional outputs, are fundamental to the field of biology and serve as the important foundation for the design of diagnostic and therapeutic systems. To maximize their functionalities and broaden their applicability, it is crucial to develop novel outputs and facile chemical transformation methods. With this aim, in this study, we present a straightforward method for converting nucleic acid signals into fluorescein outputs that exhibit a wide range of functionalities. This operation is designed through a DNA-templated reaction based on riboflavin-photocatalyzed oxidation of dihydrofluorescein, which is readily prepared by simple NaBH4 reduction of the fluorescein with no complicated chemical caging steps. The templated photooxidation exhibits high efficiency (kapp = 2.7 × 10-3/s), generating a clear fluorescein output signal distinguishable from a low background, originating from the high stability of the synthesized dihydrofluorescein. This facile and efficient operation allows the nucleic acid-initiated activation of various fluorescein functions, such as fluorescence and artificial oxidase activity, which are applied in the design of novel bioanalytical systems, including fluorescent and colorimetric DNA sensors. The operation presented herein would expand the scope of biomolecular circuit systems for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yeojin Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sarah Jang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chuljoo Chang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
6
|
Ortiz-Gómez I, Rivadeneyra A, Salmerón JF, de Orbe-Payá I, Morales DP, Capitán-Vallvey LF, Salinas-Castillo A. Near-Field Communication Tag for Colorimetric Glutathione Determination with a Paper-Based Microfluidic Device. BIOSENSORS 2023; 13:267. [PMID: 36832033 PMCID: PMC9954394 DOI: 10.3390/bios13020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Here, we propose a microfluidic paper-based analytical device (µPAD) implemented with a near-field communication (NFC) tag as a portable, simple and fast colorimetric method for glutathione (GSH) determination. The proposed method was based on the fact that Ag+ could oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized blue TMB. Thus, the presence of GSH could cause the reduction of oxidized TMB, which resulted in a blue color fading. Based on this finding, we developed a method for the colorimetric determination of GSH using a smartphone. A µPAD implemented with the NFC tag allowed the harvesting of energy from a smartphone to activate the LED that allows the capture of a photograph of the µPAD by the smartphone. The integration between electronic interfaces into the hardware of digital image capture served as a means for quantitation. Importantly, this new method shows a low detection limit of 1.0 µM. Therefore, the most important features of this non-enzymatic method are high sensitivity and a simple, fast, portable and low-cost determination of GSH in just 20 min using a colorimetric signal.
Collapse
Affiliation(s)
- Inmaculada Ortiz-Gómez
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Almudena Rivadeneyra
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
- Electronic Devices Research Group, Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - José F. Salmerón
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
- Electronic Devices Research Group, Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Ignacio de Orbe-Payá
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Diego P. Morales
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
- Electronic Devices Research Group, Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Luis Fermín Capitán-Vallvey
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Alfonso Salinas-Castillo
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Science, University of Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|