1
|
Shubhangi, Divya, Rai SK, Chandra P. Shifting paradigm in electrochemical biosensing matrices comprising metal organic frameworks and their composites in disease diagnosis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1980. [PMID: 38973017 DOI: 10.1002/wnan.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Metal Organic Frameworks (MOFs) are an evolving category of crystalline microporous materials that have grabbed the research interest for quite some time due to their admirable physio-chemical properties and easy fabrication methods. Their enormous surface area can be a working ground for innumerable molecular adhesions and site for potential sensor matrices. They have been explored in the last decade for incorporation in electrochemical sensor matrices as diagnostic solutions for a plethora of diseases. This review emphasizes on some of the recent advancements in the area of MOF-based electrochemical biosensors with focus on various important diseases and their significance in upgrading the sensor performance. It summarizes MOF-based biosensors for monitoring biomarkers relevant to diabetes, viral and bacterial sepsis infections, neurological disorders, cardiovascular diseases, and cancer in a wide range of real matrices. The discussion has been supplemented with extensive tables elaborating recent trends in the field of MOF-composite probe fabrication strategies with their respective sensing parameters. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Varanasi, Uttar Pradesh, India
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Sanjay K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Liu H, Wei W, Song J, Hu J, Wang Z, Lin P. Upconversion-Powered Photoelectrochemical Bioanalysis for DNA Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:773. [PMID: 38339489 PMCID: PMC10856881 DOI: 10.3390/s24030773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
In this work, we report a new concept of upconversion-powered photoelectrochemical (PEC) bioanalysis. The proof-of-concept involves a PEC bionanosystem comprising a NaYF4:Yb,Tm@NaYF4 upconversion nanoparticles (UCNPs) reporter, which is confined by DNA hybridization on a CdS quantum dots (QDs)/indium tin oxide (ITO) photoelectrode. The CdS QD-modified ITO electrode was powered by upconversion absorption together with energy transfer effect through UCNPs for a stable photocurrent generation. By measuring the photocurrent change, the target DNA could be detected in a specific and sensitive way with a wide linear range from 10 pM to 1 μM and a low detection limit of 0.1 pM. This work exploited the use of UCNPs as signal reporters and realized upconversion-powered PEC bioanalysis. Given the diversity of UCNPs, we believe it will offer a new perspective for the development of advanced upconversion-powered PEC bioanalysis.
Collapse
Affiliation(s)
- Hong Liu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Weiwei Wei
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Jiajun Song
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Jin Hu
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| | - Zhezhe Wang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China;
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (H.L.); (J.S.); (J.H.)
| |
Collapse
|
3
|
Yang X, Li X, He Q, Ding Y, Luo B, Xie Q, Chen J, Hu Y, Su Z, Qin X. One-step synthesis of triethanolamine-capped Pt nanoparticle for colorimetric and electrochemiluminescent immunoassay of SARS-CoV spike proteins. Microchem J 2023; 186:108329. [PMID: 36590823 PMCID: PMC9789547 DOI: 10.1016/j.microc.2022.108329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Platinum nanoparticles (PtNPs) have been attracted worldwide attention due to their versatile application potentials, especially in the catalyst and sensing fields. Herein, a facile synthetic method of triethanolamine (TEOA)-capped PtNPs (TEOA@PtNP) for electrochemiluminescent (ECL) and colorimetric immunoassay of SARS-CoV spike proteins (SARS-CoV S-protein, a target detection model) is developed. Monodisperse PtNPs with an average diameter of 2.2 nm are prepared by a one-step hydrothermal synthesis method using TEOA as a green reductant and stabilizer. TEOA@PtNPs can be used as a nanocarrier to combine with antigen by the high-affinity antibody, which leads to a remarkable inhibition of electron transfer efficiency and mass transfer processes. On the basis of its peroxidase-like activity and easy-biolabeling property, the TEOA@PtNP can be used to establish a colorimetric immunosensor of SARS-CoV S-protein thought catalyzing the reaction of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB). Especially, the Ru(bpy)3 2+ ECL reaction is well-achieved with the TEOA@PtNPs due to their great conductivity and loading abundant TEOA co-reactants, resulting in an enhancing ECL signal in immunoassay of SARS-CoV S-protein. As a consequence, two proposed methods could achieve sensitive detection of SARS-CoV S-protein in wide ranges, the colorimetric and ECL detection limits were as low as 8.9 fg /mL and 4.2 fg /mL (S/N = 3), respectively. We believe that the proposed colorimetric and ECL immunosesors with high sensitivity, good reproducibility, and good stability will be a promising candidate for a broad spectrum of applications.
Collapse
Affiliation(s)
- Xiaolan Yang
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiangyu Li
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Qingguo He
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yanbin Ding
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bin Luo
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Qiuju Xie
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Jiahao Chen
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Yue Hu
- Bairuopu Town Center Health Center, Changsha 410206, China
| | - Zhaohong Su
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoli Qin
- College of Chemistry and Material Science, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116793] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|