1
|
Zhou S, Hu W, Wang X, Cai M, Wei X, Qin J, Wang X, Fu Z, Gong J, Zhang C, Xu W, Xia L. Flexible and Stretchable Electrochemical Sensor Merging the Multifunction of Monitoring Movement and Rapid Visual Signal Transmission. ACS Sens 2025; 10:2957-2967. [PMID: 40215191 DOI: 10.1021/acssensors.4c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Noninvasive detection sensors for comfort and moisture absorption are popular for personalized health monitoring, yet integrated sensors that enable the on-demand detection of both physical and chemical indexes remain significantly challenging. Herein, we report a multifunctional fiber-based flexible sensing yarn for improved electrochemical and resistance sensing performance for in situ sweat activating and monitoring of body motion as well as the distinct color variation derived from the pH of sweat. The core-shell structure of the composite yarn (TSY) consists of a core layer of direct wet-spun twisted polyurethane fibers mixed with carbon black and a hydrophilic fiber layer of conductive zinc wires and colored lyocell fiber through the braiding method. The internal confined space between the core-shell layers can induce ion enrichment in sweat, enhancing the electrochemical sensing ability in capturing 0.5 μL of sweat, while the space-separated design can further isolate the interference so that pH and motion can be analyzed. Additionally, the colored hydrophilic lyocell fiber can transmit visual signals by the variance of color derived from the characterization of natural dyes in the process of adsorption of sweat. The designed TSY represents a promising integrated system capable of real-time monitoring of the chemical composition of sweat and the exercise conditions of movement.
Collapse
Affiliation(s)
- Sijie Zhou
- College of Textiles, Donghua University, Shanghai 201620, China
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Wanjin Hu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Xiaofeng Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Mengyao Cai
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Xinjie Wei
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Jieyao Qin
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Xuelin Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Zhuan Fu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junyao Gong
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| | - Liangjun Xia
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Liu J, Wu D, Wu Y, Shi Y, Liu W, Sun Z, Li G. Recent advances in optical sensors and probes for the detection of freshness in food samples: A comprehensive review (2020–2023). Trends Analyt Chem 2024; 177:117793. [DOI: 10.1016/j.trac.2024.117793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
4
|
Fluorescent Organic Small Molecule Probes for Bioimaging and Detection Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238421. [PMID: 36500513 PMCID: PMC9737913 DOI: 10.3390/molecules27238421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
The activity levels of key substances (metal ions, reactive oxygen species, reactive nitrogen, biological small molecules, etc.) in organisms are closely related to intracellular redox reactions, disease occurrence and treatment, as well as drug absorption and distribution. Fluorescence imaging technology provides a visual tool for medicine, showing great potential in the fields of molecular biology, cellular immunology and oncology. In recent years, organic fluorescent probes have attracted much attention in the bioanalytical field. Among various organic fluorescent probes, fluorescent organic small molecule probes (FOSMPs) have become a research hotspot due to their excellent physicochemical properties, such as good photostability, high spatial and temporal resolution, as well as excellent biocompatibility. FOSMPs have proved to be suitable for in vivo bioimaging and detection. On the basis of the introduction of several primary fluorescence mechanisms, the latest progress of FOSMPs in the applications of bioimaging and detection is comprehensively reviewed. Following this, the preparation and application of fluorescent organic nanoparticles (FONPs) that are designed with FOSMPs as fluorophores are overviewed. Additionally, the prospects of FOSMPs in bioimaging and detection are discussed.
Collapse
|
5
|
Andre RS, Mercante LA, Facure MHM, Sanfelice RC, Fugikawa-Santos L, Swager TM, Correa DS. Recent Progress in Amine Gas Sensors for Food Quality Monitoring: Novel Architectures for Sensing Materials and Systems. ACS Sens 2022; 7:2104-2131. [PMID: 35914109 DOI: 10.1021/acssensors.2c00639] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increasing demand for food production has necessitated the development of sensitive and reliable methods of analysis, which allow for the optimization of storage and distribution while ensuring food safety. Methods to quantify and monitor volatile and biogenic amines are key to minimizing the waste of high-protein foods and to enable the safe consumption of fresh products. Novel materials and device designs have allowed the development of portable and reliable sensors that make use of different transduction methods for amine detection and food quality monitoring. Herein, we review the past decade's advances in volatile amine sensors for food quality monitoring. First, the role of volatile and biogenic amines as a food-quality index is presented. Moreover, a comprehensive overview of the distinct amine gas sensors is provided according to the transduction method, operation strategies, and distinct materials (e.g., metal oxide semiconductors, conjugated polymers, carbon nanotubes, graphene and its derivatives, transition metal dichalcogenides, metal organic frameworks, MXenes, quantum dots, and dyes, among others) employed in each case. These include chemoresistive, fluorometric, colorimetric, and microgravimetric sensors. Emphasis is also given to sensor arrays that record the food quality fingerprints and wireless devices that operate as radiofrequency identification (RFID) tags. Finally, challenges and future opportunities on the development of new amine sensors are presented aiming to encourage further research and technological development of reliable, integrated, and remotely accessible devices for food-quality monitoring.
Collapse
Affiliation(s)
- Rafaela S Andre
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil
| | - Luiza A Mercante
- Institute of Chemistry, Federal University of Bahia (UFBA), 40170-280, Salvador, Bahia, Brazil
| | - Murilo H M Facure
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil.,PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905, Sao Carlos, São Paulo, Brazil
| | - Rafaela C Sanfelice
- Science and Technology Institute, Federal University of Alfenas, 37715-400, Poços de Caldas, Minas Gerais, Brazil
| | - Lucas Fugikawa-Santos
- São Paulo State University - UNESP, Institute of Geosciences and Exact Sciences, 13506-700, Rio Claro, São Paulo, Brazil
| | - Timothy M Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, São Paulo, Brazil.,PPGQ, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905, Sao Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
The Loan Trinh K, Ri Chae W, Yoon Lee N. Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|