1
|
Liu S, Zhan J, Cai B. Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Adv 2024; 14:7940-7963. [PMID: 38454947 PMCID: PMC10915833 DOI: 10.1039/d4ra00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.
Collapse
Affiliation(s)
- Shiben Liu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| |
Collapse
|
2
|
Meng X, Cao L, Li B. Metal-Organic Framework Based on Pyrazinoquinoxaline Tetracarboxylic Acid for Fluorescence Sensing for Nitro Explosives. Inorg Chem 2024; 63:518-525. [PMID: 38109697 DOI: 10.1021/acs.inorgchem.3c03401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The rapid and selective detection of nitro explosives has become one of the current urgent environmental and safety issues. Fluorescent metal-organic frameworks (MOFs) provide strong support for the development of photoactive materials with excellent sensing performances. In this work, Zn2+ and pyrazinoquinoxaline tetracarboxylic acid with high nitrogen content were selected to construct a MOF structure termed Zn-MOF, which had excellent optical properties. The fluorescence sensing performance of Zn-MOF for nitro explosives was also investigated. The structural advantages of Zn-MOF, such as its porous structure, abundant host-guest interaction sites, and stable framework, ensure the prerequisites for various applications. Zn-MOF is not only capable of responding to a wide range of substrates, such as Fe3+, Cr2O72-, and MnO4-, to achieve fluorescence quenching detection but also able to achieve sensitive fluorescence sensing behavior for nitro explosives. In particular, for trinitrotoluene, the Ksv value can reach 8.72 × 103 M-1. The results show that the introduction of pyrazinoquinoxaline groups into MOFs can be an effective strategy for the preparation of highly efficient fluorescent sensing materials for nitro explosives.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Linghui Cao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
3
|
Ayyıldız MF, Karaman DN, Kartoğlu B, Şaylan M, Chormey DS, Bakırdere S. A simple microwave-assisted synthesis of cobalt ferrite nanoparticles and its application for the determination of lead ions in rooibos (Aspalathus linearis) tea. Food Chem 2023; 429:136862. [PMID: 37478598 DOI: 10.1016/j.foodchem.2023.136862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
In this study, a magnetic sorbent assisted dispersive solid phase extraction (DSPE) method was used to preconcentrate lead ions from rooibos tea samples for determination by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS). Cobalt ferrite magnetic nanoparticles (CoFe2O4 MNPs) were synthesized by microwave assisted digestion. Limits of detection and quantification were calculated as 5.3 and 17.6 µg/L, respectively, in a linear dynamic range of 20-800 µg/L. The enhancement factor of the developed method was found to be 80-folds when compared to the detection limit of the regular FAAS system. The percent recoveries obtained for rooibos tea samples spiked at different concentrations were in the range of 77 - 125%, with high repeatability as indicated by low standard deviations. The findings of the study demonstrated that the CoFe2O4 MNPs-based extraction method is a straightforward, fast, affordable, safe, and eco-friendly approach to qualifying/quantifying lead with high precision in the selected beverage sample.
Collapse
Affiliation(s)
| | - Devrim Nur Karaman
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Türkiye
| | - Bedrihan Kartoğlu
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Türkiye
| | - Meltem Şaylan
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Türkiye; İstanbul Health and Technology University, Department of Pharmacy Seyitnizam Street, No: 85, İstanbul, Türkiye
| | - Dotse Selali Chormey
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Türkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220 İstanbul, Türkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Chemistry Department, 34220 İstanbul, Türkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya 06670, Ankara, Türkiye.
| |
Collapse
|
4
|
Jabbari S, Sorouraddin SM, Farajzadeh MA, Fathi AA. Determination of copper(II) and lead(II) ions in dairy products by an efficient and green method of heat-induced homogeneous liquid-liquid microextraction based on a deep eutectic solvent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4321-4330. [PMID: 37606547 DOI: 10.1039/d3ay01010d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
In this study, a new homogeneous liquid-liquid microextraction method using a deep eutectic solvent has been developed for the extraction of Cu(II) and Pb(II) ions in dairy products. Initially, the deep eutectic solvent was synthesized using choline chloride and p-chlorophenol and used as the extraction solvent. The synthesized solvent was soluble in milk at 70 °C and its separation from the sample was performed by decreasing the temperature. By cooling, a cloudy solution was formed due to the low solubility of the solvent at low temperatures. On centrifugation, the fine droplets of the solvent containing the analytes settled at the bottom of the tube by sedimentation. The enriched analytes were determined by flame atomic absorption spectrometry. The effect of some important parameters such as the amount of protein precipitating agent , complexing agent amount, extraction solvent volume, salt addition, pH, and temperature on the extraction efficiency of the method was studied and optimized. Under the optimal conditions, the linear ranges of the method for Cu(II) and Pb(II) ions were obtained in the ranges of 0.10-50 and 0.50-50 μg L-1 with detection limits of 0.04 and 0.18 μg L-1, respectively. The repeatability of the developed method, expressed as relative standard deviation, was determined to be 3.2 and 3.9% for Cu(II) and Pb(II) ions, respectively. Finally, by determining the concentration of Cu(II) and Pb(II) ions in milk, doogh, and cheese samples, the feasibility of the method was successfully confirmed with the extraction recoveries of 95.9 and 92.1% for Cu(II) and Pb(II) ions, respectively.
Collapse
Affiliation(s)
- Servin Jabbari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | | | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
- Engineering Faculty, Near East University, Nicosia 99138, Mersin 10, North Cyprus, Turkey
| | - Ali Akbar Fathi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
5
|
Ahmed HEH, Mohammed AMA, Soylak M. A magnetic solid phase extraction procedure for Pb(II) at trace levels on magnetic Luffa@TiO 2 in food and water samples. Food Chem 2023; 428:136794. [PMID: 37421668 DOI: 10.1016/j.foodchem.2023.136794] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
A novel magnetic Luffa@TiO2 sorbent was synthesized and characterized by using XRD, FTIR and SEM techniques. Magnetic Luffa@TiO2 was used for solid phase extraction of Pb(II) in food and water samples prior to its flame atomic absorption spectrometric (FAAS) detection. The analytical parameters such as pH, adsorbent quantity, type and volume of eluent, and foreign ions were optimized. Analytical features such as the limit of detection (LOD) and the limit of quantification (LOQ) of Pb(II) are 0.04 μg L-1 and 0.13 μg L-1 for liquid samples and 0.159 ng/g and 0.529 ng/g for solid samples, respectively. The preconcentration factor (PF) and relative standard deviation (RSD%) were found 50, and 4 % respectively. The method was validated by using three certified reference materials (NIST SRM 1577b bovine liver, TMDA-53.3 and TMDA-64.3fortified water). The presented method was applied to lead contents of some food and natural water samples.
Collapse
Affiliation(s)
- Hassan Elzain Hassan Ahmed
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Sudan Atomic Energy Commission (SAEC) - Chemistry and Nuclear Physics Institute, Khartoum, Sudan; Sudan University of Science and Technology (SUST) - College of Science-Scientific Laboratories Department, Chemistry Section, Khartoum, Sudan
| | - Ali Mohammednour Ali Mohammed
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Kassala University, Faculty of Education, Department of Chemistry, Kassala, Sudan
| | - Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Turkey; Turkish Academy of Sciences (TUBA), Bayraktar Mahallesi, Vedat Dalokay Caddesi No: 112, 06670 Cankaya, Ankara, Turkey.
| |
Collapse
|
6
|
Hanifar K, Almajidi YQ, Sanaan Jabbar H, Alexis Ramírez-Coronel A, Altalbawy FMA, Almulla AF, Turki Jalil A, Awad SA, Andres Barboza-Arenas L. An Environmental-friendly Procedure Based on Deep Eutectic Solvent for Extraction and Determination of Toxic Elements in Fish Species from Different Regions of Iraq. J Food Prot 2023; 86:100102. [PMID: 37172905 DOI: 10.1016/j.jfp.2023.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/22/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
In this study, an eco-friendly procedure was established by vortex-assisted liquid-phase microextraction based on deep eutectic solvent (VA-LPME-DES) combined with graphite furnace atomic absorption spectroscopy (GFAAS). The performance of this method was demonstrated by the extraction and analysis of lead (Pb), cadmium (Cd), and mercury (Hg) in fish samples. The hydrophobic DES is considered as a green extractant (environmentally friendly and less toxic than common organic solvents) and is a suitable alternative to common toxic organic solvents and is made of l-menthol and ethylene glycol (EG) with a molar ratio of 1:1. Under optimized conditions, the method linearity was in the ranges of 0.15-150 µg kg-1 with the coefficient of determinations (r2) higher than 0.996. Accordingly, the detection limits for Pb, Cd, and Hg were 0.05, 0.05, and 0.10 µg kg-1, respectively. The analysis of fish samples showed that the concentration of toxic elements in fish caught from the Tigris and Euphrates Rivers is much higher than the concentration of these elements in locally farmed trout fish. Also, the analysis of fish-certified reference materials with presented procedure produced results that were in good agreement with the certified values. The results showed that VA-LPME-DES is a very cheap, fast, and environmental-friendly procedure for the analysis of toxic elements in different types of fish species.
Collapse
Affiliation(s)
- Kalinaki Hanifar
- Department of Community Nutrition, Faculty of Human Ecology, Institut Pertanian Bogor, Bogor, Indonesia
| | - Yasir Q Almajidi
- Department of pharmaceutics, Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq.
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Sameer A Awad
- Department of medical laboratory techniques, Al-Maarif University College, Al-Anbar-Ramadi 31001, Iraq
| | | |
Collapse
|
7
|
Slimane Ben Ali D, Krid F, Nacef M, Boussaha EH, Chelaghmia ML, Tabet H, Selaimia R, Atamnia A, Affoune AM. Green synthesis of copper oxide nanoparticles using Ficus elastica extract for the electrochemical simultaneous detection of Cd 2+, Pb 2+, and Hg 2. RSC Adv 2023; 13:18734-18747. [PMID: 37346942 PMCID: PMC10281342 DOI: 10.1039/d3ra02974c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
In this paper, for the first time, we report the use of a new carbon paste electrode based on a low-cost pencil graphite powder modified with polyaniline (PANI) and green synthesized copper oxide nanoparticles using Ficus elastica extract as a sensor for Cd2+, Pb2+, and Hg2+. The elaborated electrode was characterized by FT-IR spectroscopy, field-emission gun scanning electron microscopy (FEG-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and simultaneous thermal analysis (TGA/DSC). The electrochemical behavior of the sensor was evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy techniques. According to CV, as well as square wave voltammetry (SWV) results, it was found that the CuONPs/PANI-CPE sensor was able to determine very low concentrations of Cd2+, Pb2+, and Hg2+ in HCl (0.01 M) either in single metal or in multi-metal solutions with a high sensitivity. Furthermore, Cd2+, Pb2+, and Hg2+ simultaneous detection on CuONPs/PANI-CPE achieved very low limits of detection (0.11, 0.16, and 0.07 μg L-1, respectively). Besides, the designed sensor displayed a good selectivity, reproducibility, and stability. Moreover, CuONPs/PANI-CPE enabled us to determine with high accuracy Cd2+, Pb2+, and Hg2+ traces in environmental matrices.
Collapse
Affiliation(s)
- Djihane Slimane Ben Ali
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- LRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955 Skikda 21000 Algeria
| | - Ferial Krid
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- Chemical and Environmental Engineering Research Laboratory, LGCE Algeria
| | - Mouna Nacef
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - El Hadi Boussaha
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
| | - Mohamed Lyamine Chelaghmia
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - Habiba Tabet
- Chemical and Environmental Engineering Research Laboratory, LGCE Algeria
| | - Radia Selaimia
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| | - Amira Atamnia
- Department of Process Engineering, Faculty of Technology, Université 20 Août 1955 El Hadaik Road Skikda 21000 Algeria
- LRPCSI-Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, Université 20 Août 1955 Skikda 21000 Algeria
| | - Abed Mohamed Affoune
- Laboratoire d'Analyses Industrielles et Génie des Matériaux, Université 8 Mai 1945 Guelma, BP 401 Guelma 24000 Algeria
| |
Collapse
|
8
|
Ding Y, Yang L, Chen W, Chen J, Zhao X, Luo Y, Zhou W. Rapid quantitative analysis of calcium in infant formula powder assisted by long short-term memory with variable importance using laser-induced breakdown spectroscopy. APPLIED OPTICS 2023; 62:2188-2194. [PMID: 37132855 DOI: 10.1364/ao.481516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Calcium is the main mineral responsible for healthy bone growth in infants. Laser-induced breakdown spectroscopy (LIBS) was combined with a variable importance-based long short-term memory (VI-LSTM) for the quantitative analysis of calcium in infant formula powder. First, the full spectra were used to establish PLS (partial least squares) and LSTM models. The R2 and root-mean-square error (RMSE) of the test set (R P2 and R M S E P) were 0.1460 and 0.0093 in the PLS method, respectively, and 0.1454 and 0.0091 in the LSTM model, respectively. To improve the quantitative performance, variable selection based on variable importance was introduced to evaluate the contribution of input variables. The variable importance-based PLS (VI-PLS) model had R P2 and R M S E P of 0.1454 and 0.0091, respectively, whereas the VI-LSTM model had R P2 and R M S E P of 0.9845 and 0.0037, respectively. Compared with the LSTM model, the number of input variables in the VI-LSTM model was reduced to 276, R P2 was improved by 114.63%, and R M S E P was reduced by 46.38%. The mean relative error of the VI-LSTM model was 3.33%. We confirm the predictive ability of the VI-LSTM model for the calcium element in infant formula powder. Thus, combining VI-LSTM modeling and LIBS has great potential for the quantitative elemental analysis of dairy products.
Collapse
|
9
|
Chaikhan P, Udnan Y, Ampiah-Bonney RJ, Chaiyasith WC. Deep eutectic solvent-based electromembrane hollow fiber liquid phase microextraction for determining Pb in water and food samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Ahmed HEH, Ozalp O, Soylak M. Magnetic Solid Phase Extraction of Lead(II) From Food and Water Samples on Magnetic MWCNTs/MgAl2O4/TiO2. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Electrochemiluminescence detection of Cu2+ ions by nitrogen-doped carbon quantum dots and zinc oxide composites. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Baghaei PAM, Mogaddam MRA, Farajzadeh MA, Mohebbi A, Sorouraddin SM. Application of deep eutectic solvent functionalized cobalt ferrite nanoparticles in dispersive micro solid phase extraction of some heavy metals from aqueous samples prior to ICP-OES. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Dual-target electrochemical DNA sensor for detection of Pb2+ and Hg2+ simultaneously by exonuclease I–assisted recycling signal amplification. Mikrochim Acta 2022; 189:460. [DOI: 10.1007/s00604-022-05569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022]
|
14
|
Ag modified ZnO nanoflowers for the dispersive micro-solid-phase extraction of lead(II) from food and water samples prior to its detection with high-resolution continuum source flame atomic absorption spectrometry. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|