1
|
Chen J, Zhang G, Xiao X, Liu D, Peng J, Xiong Y, Lai W. Bifunctional bovine serum albumin modification driven sensitivity-enhanced lateral flow immunoassay for small molecule hazards monitoring in food. Int J Biol Macromol 2024; 282:136915. [PMID: 39476895 DOI: 10.1016/j.ijbiomac.2024.136915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Traditional lateral flow immunoassays (TLFIAs) are valued for their simplicity, speed, and user-friendliness. However, the specificity of conventional test strips often necessitates large quantities of antigen-protein conjugates for target detection, which can be resource-intensive. Here, we present a strategy aimed at enhancing the universality of test strips while reducing the consumption of antigen-protein conjugates, without compromising sensitivity. By coating streptavidin on the test line and employing bifunctional antigen-protein conjugates (competitor to target and immunoprobe linker), the test strip was thus served as a universal module. We developed three universal lateral flow immunoassays (ULFIAs) for the detection of aflatoxin B1 (AFB1), carbendazim (CBZ), and enrofloxacin (ENR). Compared to traditional methods based on the same aggregation-induced emission fluorescent microspheres, the proposed ULFIAs demonstrated a significant increase in sensitivity, with enhancements of 11.0-fold for AFB1, 10.9-fold for CBZ, and 4.1-fold for ENR. Additionally, this approach substantially reduced the consumption of antigen-protein conjugates by 19.1-fold, 40.9-fold, and 23.8-fold, respectively, thereby promoting greener detection methods. This bifunctional antigen conjugate strategy offers a promising pathway for the sensitive detection of small molecule hazards.
Collapse
Affiliation(s)
- Jiawei Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Xiaoyue Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Center for Disease Control and Prevention, 555 East Beijing Road, Nanchang 330029, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China
| | - Yonghua Xiong
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 East Nanjing Road, Nanchang 330047, China.
| |
Collapse
|
2
|
Song X, Zhao Q, Dang M, Hou X, Liu S, Ma Z, Ren Y. Quenching and enhancement mechanisms of a novel Cd-based coordination polymer as a multiresponsive fluorescent sensor for nitrobenzene and aniline. Anal Chim Acta 2024; 1316:342865. [PMID: 38969412 DOI: 10.1016/j.aca.2024.342865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Nitroaromatic compounds are inherently hazardous and explosive, so convenient and rapid detection strategies are needed for the sake of human health and the environment. There is an urgent demand for chemical sensing materials that offer high sensitivity, operational simplicity, and recognizability to effectively monitor nitroaromatic residues in industrial wastewater. Despite its importance, the mechanisms underlying fluorescence quenching or enhancement in fluorescent sensing materials have not been extensively researched. The design and synthesis of multiresponsive fluorescent sensing materials have been a great challenge until now. RESULTS In this study, a one-dimensional Cd-based fluorescent porous coordination polymer (Cd-CIP-1) was synthesized using 5-(4-cyanobenzyl)isophthalic acid (5-H2CIP) and 4,4'-bis(1-imidazolyl)biphenyl (4,4'-bimp) and used for the selective detection of nitrobenzene in aqueous solution by fluorescence quenching, with a limit of detection of 1.38 × 10-8 mol L-1. The presence of aniline in the Cd-CIP-1 solution leads to the enhancement of fluorescence property. Density functional theory and time-dependent density functional theory calculations were carried out to elucidate the mechanisms of the fluorescence changes. This study revealed that the specific pore size of Cd-CIP-1 facilitates analyte screening and enhances host-guest electron coupling. Furthermore, π-π interactions and hydrogen bond between Cd-CIP-1 and the analytes result in intermolecular orbital overlap and thereby boosting electron transfer efficiency. The different electron flow directions in NB@Cd-CIP-1 and ANI@Cd-CIP-1 lead to fluorescence quenching and enhancement. SIGNIFICANCE AND NOVELTY The multiresponsive coordination polymer (Cd-CIP-1) can selectively detect nitrobenzene and recognize aniline in aqueous solutions. The mechanism of fluorescence quenching and enhancement has been thoroughly elucidated through a combination of density functional theory and experimental approaches. This study presents a promising strategy for the practical implementation of a multiresponsive fluorescent chemical sensor.
Collapse
Affiliation(s)
- Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Mingxuan Dang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Shuai Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Zhihu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, China.
| |
Collapse
|
3
|
Yang R, Zhao L, Wang F, Chen J, Ma X, Luan Y, Kong W. High-throughput extraction and automatic purification of alternariol from edible and medicinal herbs based on aptamer-functionalized magnetic nanoparticles. J Sep Sci 2024; 47:e2300870. [PMID: 38471979 DOI: 10.1002/jssc.202300870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Mycotoxin contamination is widespread in plants and herbs, posing serious threats to the consumer and human health. Of them, alternariol (AOH) has attracted great attention as an "emerging" mycotoxin in medicinal herbs. However, a specific and high-throughput extraction method for AOH is currently lacking. Thus, developing an efficient pre-treatment technique for AOH detection is extremely vital. Here, a novel automated magnetic solid-phase extraction method was proposed for the highly efficient extraction of AOH. Combining the aptamer-functionalized magnetic nanoparticles (AMNPs) and the automatic purification instrument, AOH could be extracted in medicinal herbs in high throughput (20 samples) and a short time (30 min). The main parameters affecting extraction were optimized, and the method was finally carried out by incubation AMNPs with 3 mL of sample solution for 10 min, and then desorption in 75% methanol for liquid-phase detection. Under optimal conditions, good reproducibility, stability, and selectivity were realized with an adsorption capacity of 550.84 ng/mg. AOH extraction in three edible herbs showed good resistance to matrix interference with recovery rates from 86% to 111%. In combination with AMNPs and the automatic purification instrument, high-throughput and labor-free extraction of AOH in different complex matrices was achieved, which could be extended in other complex matrices.
Collapse
Affiliation(s)
- Ruiqi Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Liping Zhao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengchao Wang
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Jin Chen
- College of Sciences, Shanghai Institute of Technology, Shanghai, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Luan
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Weijun Kong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Yu Y, Zhang Y, Chen X, Li W, Wang Z, Mi Q, Zhang J. Bi-functionality of glyoxal caged nucleic acid coupled with CRISPR/Cas12a system for Hg 2+ determination. Mikrochim Acta 2024; 191:120. [PMID: 38300346 DOI: 10.1007/s00604-024-06196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
A highly sensitive and selective fluorescence method has been conducted for the detection of Hg2+ based on aminophenylboronic acid-modified carboxyl magnetic beads (CMB@APBA) and CRISPR/Cas12a system mediated by glyoxal caged nucleic acid (gcDNA). As a bi-functional DNA linker, gcDNA offers advantages of simultaneous recognition by boronic acid and complementary DNA/RNA. Under acidic condition, gcDNA can be immobilized on CMB@APBA through the formation of borate ester bond. The formed boric acid-esterified gcDNA can further bind with complementary CRISPR RNA through A-T base pairing to activate Cas12a with kcat/Km ratio of 3.4 × 107 s-1 M-1, allowing for amplified signal. Hg2+ can specifically combine with CMB@APBA, resulting in the release of gcDNA from CMB@APBA and the following inhibition on the activation of CRISPR/Cas12a system around magnetic bead. Under optimal conditions, the method exhibits a linear range from 20 to 250 nM, with a detection limit of 2.72 nM. The proposed method can detect Hg2+ in milk and tea beverages, providing a great significance for on-site monitoring of Hg2+ contamination in food.
Collapse
Affiliation(s)
- Ying Yu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuan Zhang
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xu Chen
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wenhui Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qin Mi
- Ruijin-Hainan Hospital Shanghai Jiaotong University School of Medicine (Hainan Boao Research Hospital), Shanghai, Hainan, 570203, China.
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair, Ministry of Education, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Gao S, Zhou R, Zhang D, Zheng X, El-Seedi HR, Chen S, Niu L, Li X, Guo Z, Zou X. Magnetic nanoparticle-based immunosensors and aptasensors for mycotoxin detection in foodstuffs: An update. Compr Rev Food Sci Food Saf 2024; 23:e13266. [PMID: 38284585 DOI: 10.1111/1541-4337.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 01/30/2024]
Abstract
Mycotoxin contamination of food crops is a global challenge due to their unpredictable occurrence and severe adverse health effects on humans. Therefore, it is of great importance to develop effective tools to prevent the accumulation of mycotoxins through the food chain. The use of magnetic nanoparticle (MNP)-assisted biosensors for detecting mycotoxin in complex foodstuffs has garnered great interest due to the significantly enhanced sensitivity and accuracy. Within such a context, this review includes the fundamentals and recent advances (2020-2023) in the area of mycotoxin monitoring in food matrices using MNP-based aptasensors and immunosensors. In this review, we start by providing a comprehensive introduction to the design of immunosensors (natural antibody or nanobody, random or site-oriented immobilization) and aptasensors (techniques for aptamer selection, characterization, and truncation). Meanwhile, special attention is paid to the multifunctionalities of MNPs (recoverable adsorbent, versatile carrier, and signal indicator) in preparing mycotoxin-specific biosensors. Further, the contribution of MNPs to the multiplexing determination of various mycotoxins is summarized. Finally, challenges and future perspectives for the practical applications of MNP-assisted biosensors are also discussed. The progress and updates of MNP-based biosensors shown in this review are expected to offer readers valuable insights about the design of MNP-based tools for the effective detection of mycotoxins in practical applications.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Focusight Technology (Jiangsu) Co., LTD, Changzhou, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Shiqi Chen
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Lidan Niu
- Chongqing Institute for Food and Drug Control, Chongqing, China
| | - Xin Li
- Jiangsu Hengshun vinegar Industry Co., Ltd., Zhenjiang, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu Education Department), Zhenjiang, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Liu Y, Guo W, Zhang Y, Lu X, Yang Q, Zhang W. An accurate and ultrasensitive ratiometric electrochemical aptasensor for determination of Ochratoxin A based on catalytic hairpin assembly. Food Chem 2023; 423:136301. [PMID: 37178599 DOI: 10.1016/j.foodchem.2023.136301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Ochratoxin A (OTA) pollution in agricultural products has raised the pressing to develop sensitive, accurate and convenient detection methods. Herein, an accurate and ultrasensitive ratiometric electrochemical aptasensor was proposed based on catalytic hairpin assembly (CHA) for OTA detection. In this strategy, the target recognition and CHA reaction were both accomplished in the same system, which avoided tedious multi-steps operation and extra reagents, providing the advantage of convenience with only a one-step reaction and without enzyme. The labeled Fc and MB were used as the signal-switching molecules, avoiding various interferences and greatly improving the reproducibility (RSD: 3.197%). This aptasensor achieved trace-level detection for OTA with LOD of 81 fg/mL in the linear range of lower concentration (100 fg/mL-50 ng/mL). Moreover, this strategy was successfully applied to OTA detection in cereals with comparable results of HPLC-MS. This aptasensor provided a viable platform for accurate, ultrasensitive, and one-step detection of OTA in food.
Collapse
Affiliation(s)
- Yaxing Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wei Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yunzhe Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xin Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Qian Yang
- School of Public Health, Hebei University, Baoding 071002, China.
| | - Wei Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Hebei Provincial Key Laboratory of Analysis and Control for Zoonoses Microbial, College of Life Sciences, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
7
|
Zhao X, Liu N, Song Y, Zhang J, Han Q. Establishment of fumonisin B 1 detection method for catalytic fluorescence detection of aptamer-regulated carbon dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3953-3960. [PMID: 36196953 DOI: 10.1039/d2ay01358d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mycotoxin, common in agricultural products, is a small secondary metabolite with strong toxicity. Fumonisin B1 (FB1) is the most common and the most toxic. Establishing a rapid detection method is important for preventing and controlling FB1 pollution. This study prepared carbon dots (CDs) from 2,2'-dithiosalicylic acid (DTSA). Tetramethylbenzidine (TMB) can be catalyzed to produce fluorescence by CDs, while FB1 can adhere to the surface of CDs, decreasing fluorescence. Aptamer F10 of FB1 combines with FB1 attached to the surface of CDs to restore the catalytic ability of CDs and increase the fluorescence value. This method has good linearity in the FB1 concentration range from 0 to 1.0 μg mL-1. The standard curve was Y = -0.2512x + 661.4, R2 = 0.9903, the limit of detection (LOD) was 17.67 ng mL-1 and limit of quantitation (LOQ) was 53.55 ng mL-1. The recovery of the corn sample was 89.83-98.62%, and the detection time was 30 min.
Collapse
Affiliation(s)
- Xinyue Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Nuoya Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yuzhu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jinyang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|