1
|
Zhang W, Yang Y, Mao J, Zhang Q, Fan W, Chai G, Shi Q, Zhu C, Zhang S, Xie J. Quinoline Bridging Hyperconjugated Covalent Organic Framework as Solid-Phase Microextraction Coating for Ultrasensitive Determination of Phthalate Esters in Water Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17999-18009. [PMID: 37904272 DOI: 10.1021/acs.jafc.3c02859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity (R2 ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L-1, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L-1 were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.
Collapse
Affiliation(s)
- Wenfen Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Qingzhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shusheng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianping Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
2
|
Murtada K, Nazdrajić E, Pawliszyn J. Performance Evaluation of Extraction Coatings with Different Sorbent Particles and Binder Composition. Anal Chem 2023; 95:12745-12753. [PMID: 37584189 DOI: 10.1021/acs.analchem.3c01462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Binders are critical components used in the preparation of a range of extraction devices, including solid-phase microextraction (SPME) devices. While the main role of a binder is to affix the sorbent particles to the selected support, it is critical to select the optimal binder to ensure that it does not negatively impact the coating's particle sorption capability. This work presents the first comprehensive investigation of the interactions between binders and solid sorbent particles as these interactions can significantly impact the performance of the coating. Specifically, the findings presented herein provide a better understanding of the extraction mechanisms of composite coatings and new rules for predicting the particle adhesion forces and binder distribution in the coating. The influence of binder chemistry on coating performance is investigated by examining a selection of the most used binders, namely, polydimethylsiloxane (PDMS), polyacrylonitrile (PAN), poly(vinylidene difluoride) (PVDF), polytetrafluoroethylene amorphous fluoroplastics (PTFE AF 2400), and polybenzimidazole (PBI). The solid particles (e.g., hydrophilic-lipophilic balanced (HLB) and C18) used in this work were selected for their ability to provide optimal extraction coverage for a broad range of analytes. The results show that PDMS does not change the properties of the solid particles and that the binder occupies a negligible volume due to shrinking after polymerization, resulting in the solid particles making up most of the coating volume. Hence, the coating sorption characteristics correspond closely to the properties of the selected solid particles. On the other hand, the results also showed that PTFE AF 2400 can interact with the active surface of the sorbent, leading to the deactivation of the sorbent particles. Therefore, the extraction performance and permeability coefficients decrease as the size of the penetrant increases, indicating a rigid porous structure. The results of this study can aid in the optimization of SPME devices as they provide reference values that can be used to determine the optimal binder and the sorbent affinity for the targeted compounds. Finally, the present work also provides the broader scientific community with a strategy for investigating the properties of sorbent particle/binder structures and defines the characteristics of a good coating/membrane by analyzing all parameters such as kinetics, thermodynamic equilibria, and morphology.
Collapse
Affiliation(s)
- Khaled Murtada
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Mohammadi AA, Davarani SSH, Jafari M, Mehdinia A. Curcumin-Melamine For Solid-Phase Microextraction of Volatile Organic Compounds from Aqueous Samples. J Chromatogr Sci 2023; 61:692-698. [PMID: 36461787 DOI: 10.1093/chromsci/bmac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 08/22/2023]
Abstract
The hybrid coating of curcumin and melamine was prepared by a simple electrochemical method. Some physical and chemical properties of the fiber were studied by several methods such as FT-IR, scanning electron microscopy and X-ray fluorescence spectroscopy. The fiber was stable at the inlet of a gas chromatograph at temperatures up to 280°C. The fiber has been used for the extraction of ethylbenzene, toluene and xylenes (ETX). Some parameters of headspace solid-phase microextraction, including extraction time, temperature and salt amount, were optimized. Under the optimized situation, the detection limits were 0.15-0.21 μg L -1 and the linear ranges were within the range of 0.5-1,000 μg L-1 (r2 ≥ 0.99). The intra-day and inter-day relative standard deviations were 10.2-13.7 and 13.0-15.6%, respectively, at a concentration level of 10 μg L-1 from each compound by applying a single fiber. The method was used to successfully analyze wastewater and pool water samples.
Collapse
Affiliation(s)
| | | | - Mostafa Jafari
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Ali Mehdinia
- Department of Marine Science, Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave., Tehran 1411813389, Iran
| |
Collapse
|
4
|
Murtada K, Nazdrajić E, Pawliszyn J. Polybenzimidazole: a novel, fluorocarbon-free, SPME sorbent binder with good thermal and solvent resistance properties for GC and LC analysis. Mikrochim Acta 2023; 190:323. [PMID: 37493831 DOI: 10.1007/s00604-023-05889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
A novel solid-phase microextraction (SPME) coating is presented that uses polybenzimidazole (PBI) as a binder to immobilize micro-size sorbent particles onto a support. An evaluation of the developed binder's thermal and solvent desorption capabilities demonstrated its compatibility with both gas and liquid chromatography (GC and LC). The incorporation of hydrophilic-lipophilic balanced (HLB) particles provided optimal extraction coverage for an array of chemically diverse analytes possessing a range of hydrophobicities and molecular weights. The developed binder's performance was assessed by comparing it to a selection of binders commonly used in the literature, including polydimethylsiloxane (PDMS) and polyacrylonitrile (PAN), as well as the more recently developed polyvinylidene fluoride (PVDF) and polytetrafluoroethylene amorphous fluoroplastic (PTFE AF 2400). The results revealed that PBI provides better performance compared to PVDF and PTFE AF 2400 in terms of its environmental impact, while also being convenient for use in coating preparation and offering good matrix compatibility. The thermal analysis revealed that PBI exhibited more than 93% weight retention at 550 °C, which is superior to PVDF's 80.07% weight retention at 393.78 °C. To the best of our knowledge, this work is the first to use PBI as a particle binder in SPME coatings. The PBI coating maintained high extraction efficiencies under extreme conditions with pH values of 3 and 12. The performance of PBI in combination with HLB was assessed by employing it to extract several drugs of abuse and McReynolds compounds for LC and GC analysis, respectively. The results indicated that PBI performs similarly to PAN for LC but is outperformed by PDMS in GC applications with respect to extraction and desorption kinetics. Nonetheless, the thermal and solvent desorption results indicated that PBI can be used for both applications, as it remains stable at temperatures over 350 °C and is stable when solvent desorption is applied.
Collapse
Affiliation(s)
- Khaled Murtada
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
5
|
Liang J, Wang Y, Shi Y, Huang X, Li Z, Zhang X, Zou X, Shi J. Non-destructive discrimination of homochromatic foreign materials in cut tobacco based on VIS-NIR hyperspectral imaging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4545-4552. [PMID: 36840508 DOI: 10.1002/jsfa.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The presence of foreign materials (FM) not only reduces the commercial value of tobacco and the quality of cigarette products, but also affects the aroma and flavor of cigarettes. Existing tobacco deblending equipment has received little study with respect to homochromatic FM. In the present study, visible-near infrared (VIS-NIR) hyperspectral imaging technique combined with chemometrics were used to identify and visualize the homochromatic FM on the surface of thining tobacco. A comparison with conventional vision method was made to analyze the feasibility of the method. The importance of detecting FM in cut tobacco was further demonstrated by first studying the volatile organic compounds produced in cigarette mixed FM smoke and their effects on human health before conducting hyperspectral experiments. RESULTS The results indicated that solid-phase microextraction and gas chromatography mass spectrometry could detect volatile organic compounds in mainstream cigarette smoke that were not cigarette components and affected consumer health. Then, spectral features of the samples were extracted from hyperspectral images for building identification models to distinguish FM from cut tobacco. The visual RGB values of cut tobacco and FM were also used for the analysis of the recognition models. The results showed that the accuracy, precision and recall reached 100.00% using the back propagation artificial neural network classification model based on the principal component analysis raw wavelengths. The visualization results based on the optimal model produced clearer localization than conventional computer vision method. CONCLUSION The present study revealed that the VIS-NIR hyperspectral imaging technology had advantage in the detection and localization of FM on the surface of thinning tobacco, which provided a foundation for improving the quality and safety of cut tobacco production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Liang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Yueying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yu Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang, China
| |
Collapse
|
6
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
7
|
Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate. Processes (Basel) 2022. [DOI: 10.3390/pr10061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The practice of odorant analysis can often be very challenging because odorants are usually composed of a host of volatile organic compounds (VOCs) at low concentrations. Preconcentration with solid phase microextraction (SPME) is a conventional technique for the enrichment of these volatile compounds before analysis by headspace gas chromatography-mass spectrometry (GC-MS). However, commercially available SPME products usually bear the defects of weak mechanical strength and high cost. In this work, novel SPME fibers were prepared by a one-pot synthesis procedure from divinylbenzene (DVB), porous carbon powder (Carbon) and polydimethylsiloxane (PDMS). Factors that influence the extraction efficiency, such as extraction temperature, extraction time, salting effects, pH, stirring rate, desorption temperature and time, were optimized. VOCs in landfills pose a great threat to human health and the environment. The new SPME fibers were successfully applied in the analysis of VOCs from the leachate of a cyanobacteria landfill. Quantification methods of major odor contributors were established, and a good linearity (r > 0.998) was obtained, with detection limits in the range of 0.30–0.50 ng/L. Compared to commercial SPME fibers, the new material has higher extraction efficacy and higher precision. Hence, it is suitable for the determination of hazardous odorants of various sources.
Collapse
|