1
|
Shelash Al-Hawary SI, Malviya J, Althomali RH, Almalki SG, Kim K, Romero-Parra RM, Fahad Ahmad A, Sanaan Jabbar H, Vaseem Akram S, Hussien Radie A. Emerging Insights into the Use of Advanced Nanomaterials for the Electrochemiluminescence Biosensor of Pesticide Residues in Plant-Derived Foodstuff. Crit Rev Anal Chem 2023; 54:3614-3631. [PMID: 37728973 DOI: 10.1080/10408347.2023.2258971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Pesticides have an important role in rising the overall productivity and yield of agricultural foods by eliminating and controlling insects, pests, fungi, and various plant-related illnesses. However, the overuse of pesticides has caused pesticide pollution of water bodies and food products, along with disruption of environmental and ecological systems. In this regard, developing low-cost, simple, and rapid-detecting approaches for the accurate, rapid, efficient, and on-site screening of pesticide residues is an ongoing challenge. Electrochemiluminescence (ECL) possesses the benefits of great sensitivity, the capability to resolve several analytes using different emission wavelengths or redox potentials, and excellent control over the light radiation in time and space, making it a powerful strategy for sensing various pesticides. Cost-effective and simple ECL systems allow sensitive, selective, and accurate quantification of pesticides in agricultural fields. Particularly, the development and progress of nanomaterials, aptamer/antibody recognition, electric/photo-sensing, and their integration with electrochemiluminescence sensing technology has presented the hopeful potential in reporting the residual amounts of pesticides. Current trends in the application of nanoparticles are debated, with an emphasis on sensor substrates using aptamer, antibodies, enzymes, and molecularly imprinted polymers (MIPs). Different strategies are enclosed in labeled and label-free sensing along with luminescence determination approaches (signal-off, signal-on, and signal-switch modes). Finally, the recent challenges and upcoming prospects in this ground are also put forward.
Collapse
Affiliation(s)
| | - Jitendra Malviya
- Department of Life Sciences & Biological Sciences, IES University, Bhopal, India
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Kibum Kim
- Department of Human-Computer Interaction, Hanyang University, Seoul, South Korea
| | | | - Ahmad Fahad Ahmad
- Department of Radiology, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Shaik Vaseem Akram
- Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | |
Collapse
|
2
|
Huang Y, Feng D, Li X, Li W, Ren J, Zhong H. Covalent organic frameworks assisted for food safety analysis. Crit Rev Food Sci Nutr 2023; 64:11006-11025. [PMID: 37417398 DOI: 10.1080/10408398.2023.2230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Food safety incidents threaten human health and life safety. It is an effective method to prevent and control the occurrence of food safety events by enhancing the rapid and sensitive detection of food contaminants. Emerging porous materials provide for the development of efficient and stable detection methods. Covalent organic frameworks (COFs) are favored by researchers for their highly ordered pore structure, large specific surface area, and good structural and functional designability. Especially in the sensing field, COFs play the roles of carriers, conductors, quenchers, and reporters, and have broad application prospects. To better understand COFs-based sensing studies, this review briefly introduces the characteristics and different functional roles of COFs in food safety analysis, focusing on the applications of COFs in the detection of various food contaminants (including foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, and others). Finally, the challenges and opportunities for COFs-based sensing are discussed to facilitate further applications and development of COFs in food safety.
Collapse
Affiliation(s)
- Ying Huang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Donghui Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Xu Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Wang Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiali Ren
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Haiyan Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| |
Collapse
|
3
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
4
|
Lu Z, Wang Y, Li G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. BIOSENSORS 2023; 13:291. [PMID: 36832057 PMCID: PMC9954712 DOI: 10.3390/bios13020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Food safety is a key issue in promoting human health and sustaining life. Food analysis is essential to prevent food components or contaminants causing foodborne-related illnesses to consumers. Electrochemical sensors have become a desirable method for food safety analysis due to their simple, accurate and rapid response. The low sensitivity and poor selectivity of electrochemical sensors working in complex food sample matrices can be overcome by coupling them with covalent organic frameworks (COFs). COFs are a kind of novel porous organic polymer formed by light elements, such as C, H, N and B, via covalent bonds. This review focuses on the recent progress in COF-based electrochemical sensors for food safety analysis. Firstly, the synthesis methods of COFs are summarized. Then, a discussion of the strategies is given to improve the electrochemistry performance of COFs. There follows a summary of the recently developed COF-based electrochemical sensors for the determination of food contaminants, including bisphenols, antibiotics, pesticides, heavy metal ions, fungal toxin and bacterium. Finally, the challenges and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhenyu Lu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
A kind of new type photoresponsive molecularly imprinted electrochemical sensor based on 5-[(4-(methacryloyloxy)phenyl)diazenyla]isophthalic acid for the detection of carbaryl. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Hu S, Qin D, Meng S, Wu Y, Luo Z, Deng B. Cathodic electrochemiluminescence based on resonance energy transfer between sulfur quantum dots and dopamine quinone for the detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
The role of doping strategy in nanoparticle-based electrochemiluminescence biosensing. Bioelectrochemistry 2022; 148:108249. [PMID: 36029761 DOI: 10.1016/j.bioelechem.2022.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
Abstract
Doping plays a crucial role in electrochemiluminescence (ECL) due to the followings: (1) Modulation of electronic structure, alteration of the surface state of nanoparticles (NPs), providing effective protection from the surrounding environment, thereby leading to ECL emitters with exceptional properties including tunable spectra, high luminescence efficiency, low excitation potential, and good stability. (2) Employment of doped NPs as promising coreactant alternatives due to the presence of functional groups such as amines induced by NP doping. (3) Serving as novel co-reaction accelerators (CRAs) for ECL through doping induced high catalytic properties. (4) Behaving as excellent carriers to load ECL emitters, recognition elements, and catalysts due to doping-induced larger surface area, higher conductivity and better biocompatibility of NPs. As a consequence, doped NPs have aroused broad interest and found wide applications in various ECL sensing platforms. In this review, the current promising improvements, concepts, and excellent applications of doped NPs for ECL biosensing are addressed. We aim to bring to light the physicochemical characteristics of various doped NPs that endow them with appealing ECL performance, leading to diverse applications in biosensing.
Collapse
|