1
|
Mura M, Carucci C, Caddeo E, Sovová Š, Piludu M, Pekař M, Jachimska B, Parsons DF, Salis A. Specific buffer effects on the formation of BSA protein corona around amino-functionalized mesoporous silica nanoparticles. J Colloid Interface Sci 2025; 677:540-547. [PMID: 39106779 DOI: 10.1016/j.jcis.2024.07.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
The effect of buffer species on biomolecules and biomolecule-nanoparticle interactions is a phenomenon that has been either neglected, or not understood. Here, we study the formation of a BSA protein corona (PC) around amino-functionalized mesoporous silica nanoparticles (MSN-NH2) in the presence of different buffers (Tris, BES, cacodylate, phosphate, and citrate) at the same pH (7.15) and different concentrations (10, 50, and 100 mM). We find that BSA adsorption is buffer specific, with the adsorbed amount of BSA being 4.4 times higher in the presence of 100 mM Tris (184 ± 3 mg/g) than for 100 mM citrate (42 ± 2 mg/g). That is a considerable difference that cannot be explained by conventional theories. The results become clearer if the interaction energies between BSA and MSN-NH2, considering the electric double layer (EEDL) and the van der Waals (EvdW) terms, are evaluated. The buffer specific PC derives from buffer specific zeta potentials that, for MSN-NH2, are positive with Tris and negative with citrate buffers. A reversed sign of zeta potentials can be obtained by considering polarizability-dependent dispersion forces acting together with electrostatics to give the buffer specific outcome. These results are relevant not only to our understanding of the formation of the PC but may also apply to other bio- and nanosystems in biological media.
Collapse
Affiliation(s)
- Monica Mura
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Cristina Carucci
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Elena Caddeo
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Šárka Sovová
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Marco Piludu
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Miloslav Pekař
- Faculty of Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czechia
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Drew F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari &CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| |
Collapse
|
2
|
Namdar N, Nayeri Fasaei B, Shariati P, Joghataei SM, Arpanaei A. Mesoporous silica nanoparticles co-loaded with lysozyme and vancomycin for synergistic antimicrobial action. Sci Rep 2024; 14:29242. [PMID: 39587211 PMCID: PMC11589144 DOI: 10.1038/s41598-024-78922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Nanotechnology offers a novel strategy for enhancing the susceptibility of pathogens resistant to traditional antibiotics. Another effective strategy is combination therapy, where multiple agents are used together to improve treatment efficacy. In this study, both nanoparticle-based formulation and combinatorial therapy were utilized to develop a potent antibacterial system targeting infectious bacteria. Lysozyme (Lys) and Vancomycin (Van) were co-loaded onto mesoporous silica nanoparticles (MSNs), forming Lys-Van-MSNs. The antimicrobial activity of these nanoparticles was evaluated by determining the minimum inhibitory concentration (MIC) against Staphylococcus aureus. The MIC values for Lys-Van-MSNs were 0.85 µg/ml for Van and 0.168 mg/ml for Lys, reflecting reductions of 86.4% and 93.7%, respectively, compared to the free forms. Additionally, cytotoxicity was tested using MTT, ROS, and hemolysis assays on human cell lines (breast, fibroblast, and AGS), showing over 80% cell viability, indicating minimal toxicity. The MSN-based formulation, with its synergistic antibacterial effects, reduced drug dosage, and high biocompatibility, offers a practical and effective solution for addressing bacterial infections.
Collapse
Affiliation(s)
- Nasrin Namdar
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Bahar Nayeri Fasaei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Parvin Shariati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Mehdi Joghataei
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Ayyoob Arpanaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
- Scion, Private Bag 3020, Rotorua, 3046, New Zealand.
| |
Collapse
|
3
|
Li Q, Lai S, Shang H, Qiao N, Sun X, Lu Y, Wang Z, Wang X, Wu Y. Construction and evaluation of biomass-modified mesoporous silica nanoparticles as enzyme-responsive and pH-Responsive drug carriers for the controlled release of quercetin. J Drug Deliv Sci Technol 2024; 98:105852. [DOI: 10.1016/j.jddst.2024.105852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Wang D, Dong Y, Xin S, Li Y, Chen N, Liu Y, Wang Q, Liu G, Liu Y, Liu H, Xin Y. Safe utilization of bioresources in gentamicin mycelial residues by thermal treatment: Antibiotic degradation, resistance gene inactivation and available nutrients promotion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:245-253. [PMID: 38219462 DOI: 10.1016/j.wasman.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Gentamicin mycelium residues (GMRs) abundant in organic substances were generated during the production of gentamicin. Inappropriate handling techniques not only waste valuable resources, they could also result in residual gentamicin into the natural environment, leading to the generation of antibiotic resistance genes (ARGs), which would cause a significant threat to ecological system and human health. In the present work, the effects of thermal treatment on the removal of residual gentamicin in GMRs, as well as the changes of associated ARGs abundance, antimicrobial activity and bioresources properties were investigated. The results indicated that the hazards of GMRs was significantly reduced through thermal treatment. The degradation rate of residual gentamicin in GMRs reached 100 %, the total abundance of gentamicin resistance genes declined from 8.20 to 1.14 × 10-5 and the antibacterial activity of the decomposition products of GMRs on Vibrio fischeri was markedly reduced at 200 °C for 120 min. Additionally, the thermal treatment remarkably influenced the bioresource properties of GMRs-decomposition products. The release of soluble organic matters including soluble carbohydrates and soluble proteins have been enhanced in GMRs, while excessively high temperatures could lead to a reduction of nutrient substances. Generally, thermal treatment technology was a promising strategy for synergistic reducing hazards and utilizing bioresources of GMRs.
Collapse
Affiliation(s)
- Dong Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanan Dong
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuefei Li
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningyi Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yulin Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianwen Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yucan Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Suriya R, Lekshmi G, Anirudhan T. Hyaluronic Acid-Targeted Protein Capped AMSN for Inhibiting Tumour Growth and Side Effects by the Controlled Release of Curcumin and Doxorubicin. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Kaushik M, Sarkar N, Singh A, Kumar P. Nanomaterials to address the genesis of antibiotic resistance in Escherichia coli. Front Cell Infect Microbiol 2023; 12:946184. [PMID: 36683704 PMCID: PMC9845789 DOI: 10.3389/fcimb.2022.946184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Escherichia is a genus of prokaryotic gram-negative bacteria which forms a vital component of the gut microbiota of homeotherms including humans. Many members of this genus are commensals and pathogenic strains, which are responsible for some of the most common bacterial infections and can be fatal, particularly in the case of newborns and children. The fecal matter in wastewater treatment plants serves as major environmental sinks for the accumulation of Escherichia. The rise in antibiotic pollution and the lateral gene exchange of antibiotic-resistant genes have created antibiotic-resistant Escherichia strains that are often called superbugs. Antibiotic resistance has reached a crisis level that nowadays existing antibiotics are no longer effective. One way of tackling this emerging concern is by using nanomaterials. Punitively, nanomaterials can be used by conjugating with antibodies, biomolecules, and peptides to reduce antibiotic usage, whereas, preventatively, they can be used as either nano-antimicrobial additives or nano-photocatalytic sheets to reduce the microbial population and target the superbugs of environmental Escherichia. In this review, we have explored the threat posed by pathogenic Escherichia strains in the environment, especially in the context of antibiotic-resistant strains. Along with this, we have discussed some nanomaterial-mediated strategies in which the problem can be addressed by using nanomaterials as nanophotocatalytics, antimicrobial additives, drugs, and drug conjugates. This review also presents a brief overview of the ecological threats posed by the overuse of nanomaterials which warrants a balanced and judicious approach to the problem.
Collapse
Affiliation(s)
- Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,*Correspondence: Mahima Kaushik, ;
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Environmental Studies, University of Delhi, Delhi, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Chemistry, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
7
|
Montiel-Centeno K, Barrera D, García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, Rodríguez-Castellón E, Sandri G, Viseras C, Sapag K. Cephalexin loading and controlled release studies on mesoporous silica functionalized with amino groups. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Jiménez-Jiménez C, Moreno VM, Vallet-Regí M. Bacteria-Assisted Transport of Nanomaterials to Improve Drug Delivery in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:288. [PMID: 35055305 PMCID: PMC8781131 DOI: 10.3390/nano12020288] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Currently, the design of nanomaterials for the treatment of different pathologies is presenting a major impact on biomedical research. Thanks to this, nanoparticles represent a successful strategy for the delivery of high amounts of drugs for the treatment of cancer. Different nanosystems have been designed to combat this pathology. However, the poor penetration of these nanomaterials into the tumor tissue prevents the drug from entering the inner regions of the tumor. Some bacterial strains have self-propulsion and guiding capacity thanks to their flagella. They also have a preference to accumulate in certain tumor regions due to the presence of different chemo-attractants factors. Bioconjugation reactions allow the binding of nanoparticles in living systems, such as cells or bacteria, in a simple way. Therefore, bacteria are being used as a transport vehicle for nanoparticles, facilitating their penetration and the subsequent release of the drug inside the tumor. This review would summarize the literature on the anchoring methods of diverse nanosystems in bacteria and, interestingly, their advantages and possible applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
| | - Víctor M. Moreno
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| | - María Vallet-Regí
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| |
Collapse
|
9
|
Aguilera-Correa J, Gisbert-Garzarán M, Mediero A, Carias-Cálix R, Jiménez-Jiménez C, Esteban J, Vallet-Regí M. Arabic gum plus colistin coated moxifloxacin-loaded nanoparticles for the treatment of bone infection caused by Escherichia coli. Acta Biomater 2022; 137:218-237. [PMID: 34653694 DOI: 10.1016/j.actbio.2021.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/20/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022]
Abstract
Osteomyelitis is an inflammatory process of bone and bone marrow that may even lead to patient death. Even though this disease is mainly caused by Gram-positive organisms, the proportion of bone infections caused by Gram-negative bacteria, such as Escherichia coli, has significantly increased in recent years. In this work, mesoporous silica nanoparticles have been employed as platform to engineer a nanomedicine able to eradicate E. coli- related bone infections. For that purpose, the nanoparticles have been loaded with moxifloxacin and further functionalized with Arabic gum and colistin (AG+CO-coated MX-loaded MSNs). The nanosystem demonstrated high affinity toward E. coli biofilm matrix, thanks to AG coating, and marked antibacterial effect because of the bactericidal effect of moxifloxacin and the disaggregating effect of colistin. AG+CO-coated MX-loaded MSNs were able to eradicate the infection developed on a trabecular bone in vitro and showed pronounced antibacterial efficacy in vivo against an osteomyelitis provoked by E. coli. Furthermore, AG+CO-coated MX-loaded MSNs were shown to be essentially non-cytotoxic with only slight effect on cell proliferation and mild hepatotoxicity, which might be attributed to the nature of both antibiotics. In view of these results, these nanoparticles may be considered as a promising treatment for bone infections caused by enterobacteria, such as E. coli, and introduce a general strategy against bone infections based on the implementation of antibiotics with different but complementary activity into a single nanocarrier. STATEMENT OF SIGNIFICANCE: In this work, we propose a methodology to address E.coli bone infections by using moxifloxacin-loaded mesoporous silica nanoparticles coated with Arabic gum containing colistin (AG+CO-coated MX-loaded MSNs). The in vitro evaluation of this nanosystem demonstrated high affinity toward E. coli biofilm matrix thanks to the Arabic gum coating, a disaggregating and antibacterial effect of colistin, and a remarkable antibiofilm action because of the bactericidal ability of moxifloxacin and colistin. This anti-E. coli capacity of AG+CO-coated MX-loaded MSNs was brought out in an in vivo rabbit model of osteomyelitis where the nanosystem was able to eradicate more than 90% of the bacterial load within the infected bone.
Collapse
|
10
|
Álvarez E, Estévez M, Jiménez-Jiménez C, Colilla M, Izquierdo-Barba I, González B, Vallet-Regí M. A versatile multicomponent mesoporous silica nanosystem with dual antimicrobial and osteogenic effects. Acta Biomater 2021; 136:570-581. [PMID: 34551333 DOI: 10.1016/j.actbio.2021.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
In this manuscript, we propose a simple and versatile methodology to design nanosystems based on biocompatible and multicomponent mesoporous silica nanoparticles (MSNs) for infection management. This strategy relies on the combination of antibiotic molecules and antimicrobial metal ions into the same nanosystem, affording a significant improvement of the antibiofilm effect compared to that of nanosystems carrying only one of these agents. The multicomponent nanosystem is based on MSNs externally functionalized with a polyamine dendrimer (MSN-G3) that favors internalization inside the bacteria and allows the complexation of multiactive metal ions (MSN-G3-Mn+). Importantly, the selection of both the antibiotic and the cation may be done depending on clinical needs. Herein, levofloxacin and Zn2+ ion, chosen owing to both its antimicrobial and osteogenic capability, have been incorporated. This dual biological role of Zn2+ could have and adjuvant effect thought destroying the biofilm in combination with the antibiotic as well as aid to the repair and regeneration of lost bone tissue associated to osteolysis during infection process. The versatility of the nanosystem has been demonstrated incorporating Ag+ ions in a reference nanosystem. In vitro antimicrobial assays in planktonic and biofilm state show a high antimicrobial efficacy due to the combined action of levofloxacin and Zn2+, achieving an antimicrobial efficacy above 99% compared to the MSNs containing only one of the microbicide agents. In vitro cell cultures with MC3T3-E1 preosteoblasts reveal the osteogenic capability of the nanosystem, showing a positive effect on osteoblastic differentiation while preserving the cell viability. STATEMENT OF SIGNIFICANCE: A simple and versatile methodology to design biocompatible and multicomponent MSNs based nanosystems for infection management is proposed. These nanosystems, containing two antimicrobial agents, levofloxacin and Zn2+, have been synthetized by external functionalization of MSNs with a polycationic dendrimer (MSNs-G3), which favours its internalization inside the bacteria and lead the complexation with metal ions through the amines of the dendrimer. The nanosystems offer a notable improvement of the antibiofilm effect (above 99%) than both components separately as well as osteogenic capability with positive effect on the osteoblastic differentiation and preserved cell viability.
Collapse
Affiliation(s)
- Elena Álvarez
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Manuel Estévez
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | | | - Montserrat Colilla
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Isabel Izquierdo-Barba
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Blanca González
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
11
|
Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics 2021; 13:2033. [PMID: 34959315 PMCID: PMC8703556 DOI: 10.3390/pharmaceutics13122033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the design of mesoporous silica nanoparticles for infection treatment. Written within a general context of contributions in the field, this manuscript highlights the major scientific achievements accomplished by professor Vallet-Regí's research group in the field of silica-based mesoporous materials for drug delivery. The aim is to bring out her pivotal role on the envisage of a new era of nanoantibiotics by using a deep knowledge on mesoporous materials as drug delivery systems and by applying cutting-edge technologies to design and engineer advanced nanoweapons to fight infection. This review has been divided in two main sections: the first part overviews the influence of the textural and chemical properties of silica-based mesoporous materials on the loading and release of antibiotic molecules, depending on the host-guest interactions. Furthermore, this section also remarks on the potential of molecular modelling in the design and comprehension of the performance of these release systems. The second part describes the more recent advances in the use of mesoporous silica nanoparticles as versatile nanoplatforms for the development of novel targeted and stimuli-responsive antimicrobial nanoformulations for future application in personalized infection therapies.
Collapse
Affiliation(s)
- Elena Álvarez
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Antonio L. Doadrio
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
12
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Ke C, Wei L, Wang M, Li Q, Liu X, Guo Y, Li S. Effect of NaCl addition on the production of welan gum with the UV mutant of Sphingomonas sp. Carbohydr Polym 2021; 265:118110. [PMID: 33966819 DOI: 10.1016/j.carbpol.2021.118110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 02/03/2023]
Abstract
Because of its excellent stability, non-toxicity, biodegradability and unique rheology, welan gum can be widely used in various fields, such as petroleum, biomedicine and food products. In this study, a high-yield mutant strain FM01-S09 was screened through two rounds of UV mutagenesis. Remarkably, the production of welan gum could be further increased by adding 4 mM NaCl at 32 h fermentation, reaching 30.12 ± 0.25 g/L (28.66% higher than no adding), and the NaCl-WG solution had stronger structural, impact resistance, and temperature resistance than H2O2-WG and WG solutions. Furthermore, the mechanism by which NaCl promotes welan gum synthesis was also investigated. It was found that cell membrane characteristics, intracellular microenvironment makeup, and key enzyme gene expression levels were significantly altered in different fermentation stages. Therefore, the addition of NaCl could effectively promote the growth and fermentation performance of Sphingomonas sp., providing a novel strategy for cost-effective welan gum production.
Collapse
Affiliation(s)
- Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lulu Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Miao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qiwen Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530004, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
14
|
Colilla M, Vallet-Regí M. Targeted Stimuli-Responsive Mesoporous Silica Nanoparticles for Bacterial Infection Treatment. Int J Mol Sci 2020; 21:E8605. [PMID: 33203098 PMCID: PMC7696808 DOI: 10.3390/ijms21228605] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The rise of antibiotic resistance and the growing number of biofilm-related infections make bacterial infections a serious threat for global human health. Nanomedicine has entered into this scenario by bringing new alternatives to design and develop effective antimicrobial nanoweapons to fight against bacterial infection. Among them, mesoporous silica nanoparticles (MSNs) exhibit unique characteristics that make them ideal nanocarriers to load, protect and transport antimicrobial cargoes to the target bacteria and/or biofilm, and release them in response to certain stimuli. The combination of infection-targeting and stimuli-responsive drug delivery capabilities aims to increase the specificity and efficacy of antimicrobial treatment and prevent undesirable side effects, becoming a ground-breaking alternative to conventional antibiotic treatments. This review focuses on the scientific advances developed to date in MSNs for infection-targeted stimuli-responsive antimicrobials delivery. The targeting strategies for specific recognition of bacteria are detailed. Moreover, the possibility of incorporating anti-biofilm agents with MSNs aimed at promoting biofilm penetrability is overviewed. Finally, a comprehensive description of the different scientific approaches for the design and development of smart MSNs able to release the antimicrobial payloads at the infection site in response to internal or external stimuli is provided.
Collapse
Affiliation(s)
- Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|